【題目】綜合與探究:如圖,在平面直角坐標系xOy中,四邊形OABC是平行四邊形,A、C兩點的坐標分別為(4,0),(-2,3),拋物線W經(jīng)過O、A、C三點,D是拋物線W的頂點.
(1)求拋物線W的解析式及頂點D的坐標;
(2)將拋物線W和OABC一起先向右平移4個單位后,再向下平移m(0<m<3)個單位,得到拋物線W′和O′A′B′C′,在向下平移的過程中,設(shè)O′A′B′C′與OABC的重疊部分的面積為S,試探究:當m為何值時S有最大值,并求出S的最大值;
(3)在(2)的條件下,當S取最大值時,設(shè)此時拋物線W′的頂點為F,若點M是x軸上的動點,點N是拋物線W′上的動點,試判斷是否存在這樣的點M和點N,使得以D、F、M、N為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
【答案】(1)W=x2-x.頂點D的坐標為(2,-1).(2)當m=時,S有最大值為.(3)存在這樣的點M和點N,點M的坐標分別為(0,0),(4,0),(6,0),(14,0).
【解析】
(1)利用待定系數(shù)法求出拋物線的解析式,進而求出頂點D的坐標;
(2)由平移性質(zhì),可知重疊部分為一平行四邊形.如答圖2,作輔助線,利用相似比例式求出平行四邊形的邊長和高,從而求得其面積的表達式;然后利用二次函數(shù)的性質(zhì)求出最值;
(3)本問涉及兩個動點,解題關(guān)鍵是利用平行四邊形的判定與性質(zhì),區(qū)分點N在x軸上方、下方兩種情況,分類討論,避免漏解.設(shè)M(t,0),利用全等三角形求出點N的坐標,代入拋物線W′的解析式求出t的值,從而求得點M的坐標.
解:(1)設(shè)拋物線W的解析式為W=ax2+bx+c,
∵拋物線W經(jīng)過O(0,0)、A(4,0)、C(-2,3)三點,
∴,解得:
∴拋物線W的解析式為W=x2-x.
∵W=x2-x=(x-2)2-1,
∴頂點D的坐標為(2,-1).
(2)由OABC得,CB∥OA,CB=OA=4.
又∵C點坐標為(-2,3),
∴B點的坐標為(2,3).
如答圖2,過點B作BE⊥x軸于點E,由平移可知,點C′在BE上,且BC′=m.
∴BE=3,OE=2,∴EA=OA-OE=2.
∵C′B′∥x軸,
∴△BC′G∽△BEA,
∴,即,
∴C′G=m.
由平移知,O′A′B′C′與OABC的重疊部分四邊形C′HAG是平行四邊形.
∴S=C′GC′E=m(3-m)=-(m-)2+,
∴當m=時,S有最大值為.
(3)答:存在.
在(2)的條件下,拋物線W向右平移4個單位,再向下平移個單位,得到拋物線W′,
∵D(2,-1),∴F(6,-);
∴拋物線W′的解析式為:y=(x-6)2-.
設(shè)M(t,0),
以D、F、M、N為頂點的四邊形是平行四邊形,
①若點N在x軸下方,如答圖3所示:
過點D作DP∥y軸,過點F作FP⊥DP于點P,
∵D(2,-1),F(6,-),∴DP=,FP=4;
過點N作NQ⊥x軸于點Q,
由四邊形FDMN為平行四邊形,易證△DFP≌△NMQ,
∴MQ=FP=4,NQ=DP=,
∴N(4+t,-),
將點N坐標代入拋物線W′的解析式y=(x-6)2-,得:(t-2)2-=-,
解得:t=0或t=4,
∴點M的坐標為(0,0)或(4,0);
②若點N在x軸上方,
與①同理,得N(t-4,)
將點N坐標代入拋物線W′的解析式y=(x-6)2-,得:(t-10)2-=,
解得:t=6或t=14,
∴點M的坐標為(6,0)或(14,0).
綜上所述,存在這樣的點M和點N,點M的坐標分別為(0,0),(4,0),(6,0),(14,0).
科目:初中數(shù)學 來源: 題型:
【題目】某公司的午餐采用自助的形式,并倡導員工“適度取餐,減少浪費”該公司共有10個部門,且各部門的人數(shù)相同.為了解午餐的浪費情況,從這10個部門中隨機抽取了兩個部門,進行了連續(xù)四周(20個工作日)的調(diào)查,得到這兩個部門每天午餐浪費飯菜的重量,以下簡稱“每日餐余重量”(單位:千克),并對這些數(shù)據(jù)進行了整理、描述和分析.下面給出了部分信息..部門每日餐余重量的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,):
.部門每日餐余重量在這一組的是:6.1 6.6 7.0 7.0 7.0 7.8
.部門每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8
. 兩個部門這20個工作日每日餐余重量的平均數(shù)、中位數(shù)、眾數(shù)如下:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
| 6.4 |
| 7.0 |
/p> | 6.6 | 7.2 |
|
根據(jù)以上信息,回答下列問題:
(1)寫出表中的值;
(2)在這兩個部門中,“適度取餐,減少浪費”做得較好的部門是________(填“”或“”),理由是____________;
(3)結(jié)合這兩個部門每日餐余重量的數(shù)據(jù),估計該公司(10個部門)一年(按240個工作日計算)的餐余總重量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知多邊形是的內(nèi)接正六邊形,聯(lián)結(jié)、,點是射線上的一個動點,聯(lián)結(jié),直線交射線于點,作交的延長線于點,設(shè)的半徑為.
(1)求證:四邊形是矩形.
(2)當經(jīng)過點時,與外切,求的半徑(用的代數(shù)式表示).
(3)當,求點、、、構(gòu)成的四邊形的面積(用及含的三角比的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,在8×8的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.如果拋物線經(jīng)過圖中的三個格點,那么以這三個格點為頂點的三角形稱為該拋物線的“內(nèi)接格點三角形”,設(shè)對稱軸平行于y軸的拋物線與網(wǎng)格對角線OM的兩個交點為A,B,其頂點為C,如果△ABC是該拋物線的內(nèi)接格點三角形,且AB=3,點A,B,C的橫坐標xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線的條數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】河南開封的西瓜個大瓤紅且甜,全國知名某瓜農(nóng)準備從某貨運公司租用大小兩種型號的貨車運輸西瓜到外地銷售,已知一輛大型貨車和一輛小型貨車每次共運10噸;兩輛大型貨車和三輛小型渣貨車每次共運24噸.
求一輛大型貨車和一輛小型貨車每次各運西瓜多少噸?
已知一輛大型貨車運輸花費為400元次,一輛小型貨車運輸花費為300元次,計劃用20輛貨車運輸,且每次運輸西瓜總重量不少于96噸,如何安排才能使每次運費最低,最低費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GEGD.
(1)求證:∠ACF=∠ABD;
(2)連接EF,求證:EFCG=EGCB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某城市有一段馬路需要整修,這段馬路的長不超過3450米.今有甲、乙、丙三個施工隊,分別施工人行道、非機動車道和機動車道.他們于某天零時同時開工,每天24小時連續(xù)施工.若干天后的零時,甲完成任務(wù);幾天后的18時,乙完成任務(wù),自乙隊完成的當天零時起,再過幾天后的8時,丙完成任務(wù),已知三個施工隊每天完成的施工任務(wù)分別為300米、240米、180米,則這段路面有 米長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,點P是AB延長線上一點,∠BCP=∠A.
(1)求證:直線PC是⊙O的切線;
(2)若CA=CP,⊙O的半徑為2,求CP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某興趣小組用無人機進行航拍測高,無人機從1號樓和2號樓的地面正中間B點垂直起飛到高度為50米的A處,測得1號樓頂部E的俯角為60°,測得2號樓頂部F的俯角為45°.已知1號樓的高度為20米,則2號樓的高度為_____米(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com