【題目】在平面直角坐標(biāo)系xOy中,對于點,若點Q的坐標(biāo)為,其中a為常數(shù),則稱點Q是點P的“a級關(guān)聯(lián)點”例如,點的“3級關(guān)聯(lián)點”為,即.
已知點的“級關(guān)聯(lián)點”是點,點B的“2級關(guān)聯(lián)點”是,求點和點B的坐標(biāo);
已知點的“級關(guān)聯(lián)點”位于y軸上,求的坐標(biāo);
已知點,,點和它的“n級關(guān)聯(lián)點”都位于線段CD上,請直接寫出n的取值范圍.
【答案】,;;.
【解析】
(1)根據(jù)關(guān)聯(lián)點的定義,結(jié)合點的坐標(biāo)即可得出結(jié)論.
(2)根據(jù)關(guān)聯(lián)點的定義和點M(m-1,2m)的“-3級關(guān)聯(lián)點”M'位于y軸上,即可求出M'的坐標(biāo).
(3)因為點C(-1,3),D(4,3),得到y=3,由點N(x,y)和它的“n級關(guān)聯(lián)點”N'都位于線段CD上,可得到方程組,解答即可.
點的“級關(guān)聯(lián)點”是點,
,
即.
設(shè)點,
點B的“2級關(guān)聯(lián)點”是,
,
解得
.
點的“級關(guān)聯(lián)點”為,
位于y軸上,
,
解得:
,
.
點和它的“n級關(guān)聯(lián)點”都位于線段CD上,
,
,
,
,
解得:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司到果園基地購買某種優(yōu)質(zhì)水果,慰問醫(yī)務(wù)工作者,果園基地對購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運回,已知該公司租車從基地到公司的運輸費為5000元.
(1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)依據(jù)購買量判斷,選擇哪種購買方案付款最少?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,調(diào)查方式選擇不合理的是
A. 調(diào)查我國中小學(xué)生觀看電影厲害了,我的國情況,采用抽樣調(diào)查的方式
B. 調(diào)查全市居民對“老年餐車進(jìn)社區(qū)”活動的滿意程度,采用抽樣調(diào)查的方式
C. 調(diào)查“神州十一號”運載火箭發(fā)射前零部件質(zhì)量狀況,采用全面調(diào)查普查的方式
D. 調(diào)查市場上一批LED節(jié)能燈的使用壽命,采用全面調(diào)查普查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,已知AD∥BC,AB=CD,延長線段CB到E,使BE=AD,連接AE、AC.
【1】求證:△ABE≌△CDA;
【2】若∠DAC=40°,求∠EAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BI,CI分別平分∠ABC,∠ACB,過I點作DE∥BC,交AB于D,交AC于E,給出下列結(jié)論:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周長等于AB+AC.其中正確的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙D的直徑,AD切⊙D于點A,EC=CB.則下列結(jié)論:①BA⊥DA; ②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正確的個數(shù)有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點B順時針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點F,則△ACF與△BDF的周長之和為cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com