【題目】某地向湖北派遣由5名醫(yī)護(hù)人員組成的一支醫(yī)療隊(duì),支援抗擊新型冠狀病毒肺炎疫情.已知這五名醫(yī)護(hù)人員的年齡分別為24,28,36,36,47(單位:歲),其中年齡為24,47歲的是女隊(duì)員,其余是男隊(duì)員.
(1)求這五名醫(yī)護(hù)人員的年齡的眾數(shù);
(2)若因疫情需要,需增加一名醫(yī)護(hù)人員,若增加后年齡的中位數(shù)小于原來(lái)年齡的中位數(shù),則增加醫(yī)護(hù)人員的最大年齡是多少?
(3)若需要從男性隊(duì)員中選兩名參加重癥病人搶救,求所選兩名隊(duì)員的年齡恰好相等的概率.
【答案】(1)36(2)35(3)
【解析】
(1)根據(jù)所給年齡數(shù)據(jù)進(jìn)行分析,找出出現(xiàn)次數(shù)最多的數(shù)字即為所求結(jié)果;
(2)先求出原數(shù)據(jù)的中位數(shù),再對(duì)新加入的人的年齡進(jìn)行分類討論,即可得到結(jié)果;
(3)運(yùn)用列表法進(jìn)行求解即可;
解:(1)在24,28,36,36,47中,36出現(xiàn)的次數(shù)最多,
因此這醫(yī)護(hù)人員的年齡的眾數(shù)36;
(2)數(shù)據(jù)24,28,36,36,47的中位數(shù)是36,
設(shè)增加醫(yī)護(hù)人員的年齡為,
當(dāng),得到新數(shù)據(jù)的中位數(shù)仍為36,當(dāng)時(shí),得到新數(shù)據(jù)的中位數(shù)小于36.
因此增加醫(yī)護(hù)人員的最大年齡是35;
(3)列表如下:
28 | 36 | 36 | |
28 | |||
36 | |||
36 |
一共有六種等可能結(jié)果,其中均為36歲有兩種等可能結(jié)果,
(所選兩名隊(duì)員的年齡恰好相等).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)種植A、B、C三種樹(shù)苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹(shù)苗,且每名工人每天可植A種樹(shù)苗8棵;或植B種樹(shù)苗6棵,或植C種樹(shù)苗5棵.經(jīng)過(guò)統(tǒng)計(jì),在整個(gè)過(guò)程中,每棵樹(shù)苗的種植成本如圖所示.設(shè)種植A種樹(shù)苗的工人為x名,種植B種樹(shù)苗的工人為y名.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)種植的總成本為w元,
①求w與x之間的函數(shù)關(guān)系式;
②若種植的總成本為5600元,從植樹(shù)工人中隨機(jī)采訪一名工人,求采訪到種植C種樹(shù)苗工人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果,正方形ABCD的邊長(zhǎng)為2cm,E為CD邊上一點(diǎn),∠DAE=30°,M為AE的中點(diǎn),過(guò)點(diǎn)M作直線分別與AD、BC相交于點(diǎn)P、Q,若PQ=AE,則PD等于( )
A. cm或cm B. cm C.cm或cm D.cm或cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:若拋物線的頂點(diǎn)在坐標(biāo)軸上,則稱該拋物線為“數(shù)軸函數(shù)”例如拋物線y=x2和y=(x-1)2都是“數(shù)軸函數(shù)”.
(1)拋物線y=x2-4x+4和拋物線y=x2-6x是“數(shù)軸函數(shù)“嗎?請(qǐng)說(shuō)明理由;
(2)若拋物線y=2x2+4mx+m2+16是“數(shù)軸函數(shù)”,求該拋物線的表達(dá)式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB⊥AC,DC⊥AC,∠B=∠D,,,,點(diǎn)E,F分別是BC,AD的中點(diǎn).
(1)求證:;
(2)當(dāng)與滿足什么數(shù)量關(guān)系時(shí),四邊形是正方形?請(qǐng)證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.給出下列結(jié)論:①∠AFC=∠C;②DF=BF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正確的結(jié)論是_____(填寫(xiě)所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小聰用一張面積為1的正方形紙片,按如下方式操作:
①將正方形紙片四角向內(nèi)折疊,使四個(gè)頂點(diǎn)重合,展開(kāi)后沿折痕剪開(kāi),把四個(gè)等腰直角三角形扔掉;
②在余下紙片上依次重復(fù)以上操作,
當(dāng)完成第2020次操作時(shí),余下紙片的面積為( )
A.22019B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交AB,AD于點(diǎn)M,N;②分別以M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P;③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),,與軸交于點(diǎn),直線為.
(1)求拋物線的解析式.
(2)過(guò)點(diǎn)作直線與拋物線在第一象限的交點(diǎn)為.當(dāng)時(shí),確定直線與的位置關(guān)系.
(3)在第二象限拋物線上求一點(diǎn),使.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com