【題目】如圖,在平面直角坐標系中,A(﹣15),B(﹣1,0),C(﹣4,3).

1)在圖中作出ABC關于m(直線m上的橫坐標都為﹣2)的對稱圖形A1B1C1;

2)線段上有一點P(﹣),直接寫出點P關于直線m對稱的點的坐標   

3)線段BC上有一點Ma,b),點M關于直線m的對稱點Nc,d),請直接寫出a,c的關系:   ;b,d的關系:   

【答案】1)見解析;(2)(﹣,);(3a+c=﹣4bd

【解析】

(1)分別作出ABC關于直線m的對稱點,再順次連接即可得;

(2)根據(jù)軸對稱的性質(zhì),可得點P關于直線m對稱的點的坐標;

(3)根據(jù)軸對稱的性質(zhì)知M、N兩點的縱坐標相等,橫坐標的平均數(shù)等于﹣2可得.

(1)如圖所示,A1B1C1即為所求;

(2)線段上有一點P(﹣,),由軸對稱的性質(zhì)可得,點P關于直線m對稱的點的橫坐標為,縱坐標為,

∴點P關于直線m對稱的點的坐標是(﹣,),

故答案為:(﹣,);

(3)由軸對稱的性質(zhì)知:b=d,,即,

故答案為:,b=d

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中建立平面直角坐標系,已知ABC三個頂點分別為A﹣1,2)、B2,1)、C45).

1)畫出ABC關于x對稱的A1B1C1;

2)以原點O為位似中心,在x軸的上方畫出A2B2C2,使A2B2C2ABC位似,且位似比為2,并求出A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形是正方形, 延長線上一點.直角三角尺的一條直角邊經(jīng)過點,且直角頂點邊上滑動(不與點重合),另一直角邊與的平分線相交于點

(1)求證: ;

(2)如圖(1),當點邊的中點位置時,猜想的數(shù)量關系,并證明你的猜想;

(3)如圖(2),當點(除兩端點)上的任意位置時,猜想此時有怎樣的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點O,DEAB于點E,連接OE,若DE,BE1,則∠AOE的度數(shù)是( 。

A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在暗室做小孔成像實驗.如圖1,固定光源(線段MN)發(fā)出的光經(jīng)過小孔(動點K)成像(線段M'N')于足夠長的固定擋板(直線l)上,其中MN// l.已知點K勻速運動,其運動路徑由AB,BC,CD,DA,AC,BD組成記它的運動時間為x,M'N'的長度為y,若y關于x的函數(shù)圖象大致如圖2所示,則點K的運動路徑可能為( )

A. A→B→C→D→A B. B→C→D→A→B

C. B→C→A→D→B D. D→A→B→C→D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖①,點M、N把線段AB分割成AM、MNBN,若以AM,MNBN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.

1)已知點M、N是線段AB的勾股分割點,若AM2,MN3,求BN的長;

2)如圖2,在RtABC中,ACBC,點MN在斜邊AB上,∠MCN45°,求證:點M,N是線段AB的勾股分割點(提示:把ACM繞點C逆時針旋轉90°

3)在(2)的前提下,若∠BCN15°,BN1.求AN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一段時間后,記錄下這種植物高度的增長情況(如下表):

溫度x/

﹣4

﹣2

0

2

4

6

植物每天高度的增長量y/mm

41

49

49

41

25

1

由這些數(shù)據(jù),科學家推測出植物每天高度的增長量y是溫度x的二次函數(shù),那么下列三個結論:

①該植物在0℃時,每天高度的增長量最大;

②該植物在﹣6℃時,每天高度的增長量能保持在25mm左右;

③該植物與大多數(shù)植物不同,6℃以上的環(huán)境下高度幾乎不增長.

上述結論中,所有正確結論的序號是

A. ①②③ B. ①③ C. ①② D. ②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:

1每千克核桃應降價多少元?

21問的條件下,平均每天獲利不變,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?

3寫出每天總利潤與降價元的函數(shù)關系式,為了使每天的利潤最大,應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根

(1)求實數(shù)k的取值范圍.

(2)若方程兩實根滿足|x1|+|x2|=x1·x2,求k的值.

查看答案和解析>>

同步練習冊答案