如圖,將一塊正方形紙片沿對角線折疊一次,然后在得到的三角形的三個角上各挖去一個圓洞,最后將正方形紙片展開,得到的圖案是( )

A.
B.
C.
D.
【答案】分析:由平面圖形的折疊及立體圖形的表面展開圖的特點解結(jié)合實際操作解題.
解答:解:通過自己動手,親自實踐一下,很容易得出正確結(jié)果為C.
故選C.
點評:此題主要考查學(xué)生的動手實踐能力和想象能為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點A與點C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個重合的矩形,其中一個是內(nèi)接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;
(3)請你在圖④的方格紙中畫出一個斜三角形,同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形的頂點)上;
(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內(nèi)接矩形的四個頂點分別在原四邊形的四條邊上).請你進一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時,一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、按要求解答下列問題:
(1)圖1是一塊直角三角形紙片,將該三角形紙片按如圖方法折疊,使點A與點C重合,DE為折痕,試證明△CBE為等腰三角形;
(2)再將圖1中的△CBE沿對稱軸EF折疊(如圖2).通過折疊,原三角形恰好折成兩個完全重合的矩形,其中一個是內(nèi)接矩形,另一個是拼合(指無縫隙無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”,你能將圖3中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖3中畫出折痕;
(3)請你在圖4的方格紙中畫出一個斜三角形,使它同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形頂點)上.(畫出一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年浙江樂清育英學(xué)校五校九年級12月聯(lián)考B班數(shù)學(xué)試卷(解析版) 題型:解答題

工人師傅要將一塊如圖(1)所示的白鐵皮,經(jīng)過適當(dāng)?shù)募羟泻,焊接成一塊與白鐵皮面積相等的正方形鐵皮(焊接時不計材料的損耗),按要求完成下列各題:

(1)正方形的邊長為          ;

(2)請在圖(1)中用虛線畫出剪切線;

(3)在圖(2)的方格紙中畫出圖(1)剪切后所拼成正方形的圖案(保留拼接痕跡,不寫畫法).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

按要求解答下列問題:
(1)圖1是一塊直角三角形紙片,將該三角形紙片按如圖方法折疊,使點A與點C重合,DE為折痕,試證明△CBE為等腰三角形;
(2)再將圖1中的△CBE沿對稱軸EF折疊(如圖2).通過折疊,原三角形恰好折成兩個完全重合的矩形,其中一個是內(nèi)接矩形,另一個是拼合(指無縫隙無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”,你能將圖3中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖3中畫出折痕;
(3)請你在圖4的方格紙中畫出一個斜三角形,使它同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形頂點)上.(畫出一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年北京市豐臺區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

按要求解答下列問題:
(1)圖1是一塊直角三角形紙片,將該三角形紙片按如圖方法折疊,使點A與點C重合,DE為折痕,試證明△CBE為等腰三角形;
(2)再將圖1中的△CBE沿對稱軸EF折疊(如圖2).通過折疊,原三角形恰好折成兩個完全重合的矩形,其中一個是內(nèi)接矩形,另一個是拼合(指無縫隙無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”,你能將圖3中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖3中畫出折痕;
(3)請你在圖4的方格紙中畫出一個斜三角形,使它同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形頂點)上.(畫出一個即可).

查看答案和解析>>

同步練習(xí)冊答案