【題目】如圖,把一塊含30°角的三角板的直角頂點(diǎn)放在反比例函數(shù)y=-(x<0)的圖象上的點(diǎn)C處,另兩個(gè)頂點(diǎn)分別落在原點(diǎn)O和x軸的負(fù)半軸上的點(diǎn)A處,且∠CAO=30°,則AC邊與該函數(shù)圖象的另一交點(diǎn)D的坐標(biāo)為__________.
【答案】(-3,)
【解析】
過(guò)點(diǎn)C作CE⊥AO于點(diǎn)E,由題意可得:AE=CE,CE=OE,設(shè)點(diǎn)C坐標(biāo)為(a,-a),代入解析式可求a=-1,可求點(diǎn)A坐標(biāo),點(diǎn)C坐標(biāo),即可求直線AC解析式,直線AC解析式與反比例函數(shù)解析式組成方程組,可求點(diǎn)D坐標(biāo).
如圖:過(guò)點(diǎn)C作CE⊥AO于點(diǎn)E
∵∠CAO=30°,CE⊥AO
∴∠COE=60°,AC=2CE,AE=CE
∴CE=EO
設(shè)點(diǎn)C坐標(biāo)為(a,-a)
∵點(diǎn)C在反比例函數(shù)y=-(x<0)的圖象上
∴a×(-a)=-
解得:a=-1,a=1(舍去)
∴點(diǎn)C坐標(biāo)(-1,)
∴CE=,EO=1
∴AE=×=3
∴AO=4
∴點(diǎn)A(-4,0)
∵點(diǎn)A(-4,0),點(diǎn)C(-1,)
∴直線AC解析式y=x+
∵直線AC與反比例函數(shù)y=-相交于點(diǎn)C,點(diǎn)D
∴-=x+
解得:x1=-1,x2=-3
∴點(diǎn)D坐標(biāo)為(-3,)
故答案為:(-3,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=-(x-1)2+5,當(dāng)m≤x≤n且mn<0時(shí),y的最小值為2m,最大值2n,則m+n的值等于( )
A.0B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了運(yùn)送防疫物資,甲、乙兩貨運(yùn)公司各派出一輛卡車,分別從距目的地240千米和270千米的兩地同時(shí)出發(fā),馳援疫區(qū).已知乙公司卡車的平均速度是甲公司卡車的平均速度的1.5倍,甲公司的卡車比乙公司的卡車晚1小時(shí)到達(dá)目的地,分別求甲、乙兩貨運(yùn)公司卡車的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形中,BC=3,動(dòng)點(diǎn)從出發(fā),以每秒1個(gè)單位的速度,沿射線方向移動(dòng),作關(guān)于直線的對(duì)稱,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為
(1)若
①如圖2,當(dāng)點(diǎn)B’落在AC上時(shí),顯然△PCB’是直角三角形,求此時(shí)t的值
②是否存在異于圖2的時(shí)刻,使得△PCB’是直角三角形?若存在,請(qǐng)直接寫出所有符合題意的t的值?若不存在,請(qǐng)說(shuō)明理由
(2)當(dāng)P點(diǎn)不與C點(diǎn)重合時(shí),若直線PB’與直線CD相交于點(diǎn)M,且當(dāng)t<3時(shí)存在某一時(shí)刻有結(jié)論∠PAM=45°成立,試探究:對(duì)于t>3的任意時(shí)刻,結(jié)論∠PAM=45°是否總是成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標(biāo)軸的正半軸上,BC∥x軸,OA=OC=4,以直線x=1為對(duì)稱軸的拋物線過(guò)A,B,C三點(diǎn).
(1)求該拋物線的函數(shù)解析式;
(2)已知直線的解析式為y=x+m,它與x軸交于點(diǎn)G,在梯形ABCO的一邊上取點(diǎn)P.
①當(dāng)m=0時(shí),如圖1,點(diǎn)P是拋物線對(duì)稱軸與BC的交點(diǎn),過(guò)點(diǎn)P作PH⊥直線于點(diǎn)H,連結(jié)OP,試求△OPH的面積;
②當(dāng)m=﹣3時(shí),過(guò)點(diǎn)P分別作x軸、直線的垂線,垂足為點(diǎn)E,F(xiàn).是否在線段BC存在這樣的點(diǎn)P,使以P,E,F(xiàn)為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,BC=5,∠ABC=60°. 按以下步驟作圖:①以C為圓心,以適當(dāng)長(zhǎng)為半徑做弧,交CB、CD于M、N兩點(diǎn);②分別以M、N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)E,作射線CE交BD于點(diǎn)O,交AD邊于點(diǎn)F;則BO的長(zhǎng)度為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接體育理化加試,九(2)班同學(xué)到某體育用品商店采購(gòu)訓(xùn)練用球,已知購(gòu)買3個(gè)A品牌足球和2個(gè)B品牌足球需付210元;購(gòu)買2個(gè)A品牌足球和1個(gè)B品牌足球需付費(fèi)130元.(優(yōu)惠措施見海報(bào))
(1)求A,B兩品牌足球的單價(jià)各為多少元;
(2)為享受優(yōu)惠,同學(xué)們決定購(gòu)買一次性購(gòu)買足球60個(gè),若要求A品牌足球的數(shù)量不低于B品牌足球數(shù)量的3倍,請(qǐng)你設(shè)計(jì)一種付費(fèi)最少的方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:如圖1和圖2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點(diǎn)E、F分別在BC、CD上,∠EAF=45°.
(1)①如圖1,若∠B、∠ADC都是直角,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,直接寫出線段BE、DF和EF之間的數(shù)量關(guān)系 ;
②如圖2,若∠B、∠D都不是直角,但滿足∠B+∠D=180°,線段BE、DF和EF之間的結(jié)論是否仍然成立,若成立,請(qǐng)寫出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由.
(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2.點(diǎn)D、E均在邊BC邊上,且∠DAE=45°,若BD=1,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中∠C=90°,AB=10,AC=8.
(1)作AB的垂直平分線DE,交AB于點(diǎn)D,交AC于點(diǎn)E.(要求尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)求AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com