【題目】如圖所示,在四邊形中,、、、分別是、、、的中點(diǎn),請?zhí)砑右粋(gè)與四邊形對角線有關(guān)的條件________,使四邊形是特殊的平行四邊形為________形.

【答案】對角線相等

【解析】

連接AC、BD,根據(jù)三角形的中位線定理求出EH=BD,HG=AC,EHBD,HG//AC,F(xiàn)GBD,EF//AC,推出平行四邊形EFGH,再求出EH=HG即可.

連接ACBD,E、FG、H分別是ABBC、CDDA的中點(diǎn),∴EHBDHGAC,EH//BDHG//AC,FG//BDEFAC,EH//FGHG//EF∴四邊形EFGH是平行四邊形,∵ACBD,EHHG,∴平行四邊形EFGH是菱形,故答案為⑴對角線相等;⑵菱.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)AB,如下圖.電信部門要修建一座信號發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)AB的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫出畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)了一次函數(shù)后,某校數(shù)學(xué)興趣小組根據(jù)學(xué)習(xí)的經(jīng)驗(yàn),對函數(shù)y=-x-2的圖象和性質(zhì)進(jìn)行了探究,下面是該興趣小組的探究過程,請補(bǔ)充完整:

(1)自變量x的取值范圍是全體實(shí)數(shù),xy的幾組對應(yīng)值如表:

x

...

-3

-2

-1

0

1

2

3

...

y

...

-5

-4

-3

n

-3

-4

-5

...

n= ;

②如圖,在所給的平面直角坐標(biāo)系中,描出以表中各組對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn)畫出該函數(shù)的圖象;

(2)當(dāng)一2x≤5時(shí),y的取值范圍是

(3)根據(jù)所畫的圖象,請寫出一條關(guān)于該函數(shù)圖象的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Bx軸的正半軸上,AO=AB,∠OAB=90°,OB=12,點(diǎn)CD均在邊OB上,且∠CAD=45°,若ACO的面積等于ABO面積的,則點(diǎn)D的坐標(biāo)為 _______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地相距l 100米,甲從A地出發(fā),乙從B地出發(fā),相向而行,甲比乙先出發(fā)2分鐘,乙出發(fā)7分鐘后與甲相遇,設(shè)甲、乙兩人相距y米,甲行進(jìn)的時(shí)間為t分鐘,yt之間的函數(shù)關(guān)系如圖所示.請你結(jié)合圖象探究:

(1)甲的行進(jìn)速度為每分鐘__________米,m =____分鐘;

(2)求直線PQ對應(yīng)的函數(shù)表達(dá)式;

(3)求乙的行進(jìn)速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣kx﹣2=0.

(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)已知方程的一個(gè)根為x=+1,求k的值及另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的三條邊長分別為2,5,6,在ABC所在平面內(nèi)畫一條直線,將ABC分成兩個(gè)三角形,使其中一個(gè)三角形為等腰三角形.

1)這樣的直線最多可以畫 條;

2)請?jiān)谌齻(gè)備用圖中分別畫出符合條件的一條直線,要求每個(gè)圖中得到的等腰三角形腰長不同,尺規(guī)作圖,不寫作法,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=x+12+1y2=ax423交于點(diǎn)A1,3),過點(diǎn)Ax軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論:①a=AC=AE;③△ABD是等腰直角三角形;④當(dāng)x1時(shí),y1y2  其中正確結(jié)論的個(gè)數(shù)是( )

A. 1個(gè)B2個(gè)C3個(gè)D4個(gè)

查看答案和解析>>

同步練習(xí)冊答案