如圖,⊙H與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),圓心H的坐標(biāo)是(1,-1),半徑是
(1)求經(jīng)過點(diǎn)D的切線的解析式;
(2)問過點(diǎn)A的切線與過點(diǎn)D的切線是否垂直?若垂直,請(qǐng)寫出證明過程;若不垂直,請(qǐng)說明理由.

【答案】分析:(1)設(shè)過D的切線交x軸于E,設(shè)EA=x,即可表示出OE、EB的長;可分別用切割線定理及勾股定理得出DE2的表達(dá)式,聯(lián)立兩式即可求出x的值,也就得到了E點(diǎn)的坐標(biāo);進(jìn)而可利用待定系數(shù)法求出直線DE的解析式;
(2)由(1)易得AB=CD,則弧AB=弧CD,由弦切角定理即可得到∠NAO=∠MDN;而∠NAO與∠ANO互余,則∠MDN也與∠ANO互余,由此得證.
解答:解:(1)設(shè)過點(diǎn)D的切線交x軸于點(diǎn)E,EA=x,
則DE2=EA•EB=x(x+4);
又在Rt△DOE中,DE2=EO2+DO2=(x+1)2+32
∴(x+1)2+32=x(x+4);(6分)
解得x=5,即EA=5,
點(diǎn)E的坐標(biāo)為(-6,0);(7分)
設(shè)所求切線的解析式為y=kx+b,因?yàn)樗?jīng)過(0,-3)和(-6,0)兩點(diǎn),

解得
∴所求解析式為y=-x-3;(8分)

(2)過點(diǎn)A的切線與過點(diǎn)D的切線互相垂直,證明如下:(9分)
證明:設(shè)過點(diǎn)A的切線與DE相交于點(diǎn)M,與y軸相交于點(diǎn)N;
∵AB=CD=4,即有=
∴∠NAO=∠MDO;(10分)
又∵∠NAO+∠ANO=90°,
∴∠MND+∠MDN=90°;
∴過點(diǎn)A的切線與過點(diǎn)D的切線互相垂直.
點(diǎn)評(píng):此題主要考查了垂徑定理、勾股定理、一次函數(shù)解析式的確定、切線的性質(zhì)、切割線定理、弦切角定理等知識(shí)的綜合應(yīng)用能力,綜合性較強(qiáng),難度較高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物精英家教網(wǎng)線的頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)求拋物線頂點(diǎn)D的坐標(biāo);
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)指出符合條件的點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙A與y軸交于C、D兩點(diǎn),圓心A的坐標(biāo)為(1,0),⊙A的半徑為
5
,過點(diǎn)C作⊙A的切線交x軸于點(diǎn)B(-4,0).
精英家教網(wǎng)
(1)求切線BC的解析式;
(2)若點(diǎn)P是第一象限內(nèi)⊙A上的一點(diǎn),過點(diǎn)P作⊙A的切線與直線BC相交于點(diǎn)G,且∠CGP=120°,求點(diǎn)G的坐標(biāo);
(3)向左移動(dòng)⊙A(圓心A始終保持在x軸上),與直線BC交于E、F,在移動(dòng)過程中是否存在點(diǎn)A,使△AEF是直角三角形?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸交于A(-2,0),B(6,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-4).
(1)求拋物線的解析式;
(2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)F為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙A與x軸交于B(2,0)、C(4,0)兩點(diǎn),OA=3,點(diǎn)P是y軸上的一個(gè)動(dòng)點(diǎn),PD切⊙O于點(diǎn)D,則PD的最小值是
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸交于A(1,0),B(-3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求此拋物線的解析式;
(2)在x軸上找一點(diǎn)D,使得以點(diǎn)A、C、D為頂點(diǎn)的三角形是直角三角形,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案