【題目】如圖,點(diǎn)P是菱形ABCD的對角線BD上一點(diǎn),連接CP并延長交AD于E,交BA的延長線于點(diǎn)F.
(1)求證:△APD≌△CPD;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.
【答案】
(1)
證明:∵ABCD是菱形,
∴DA=DC,∠ADP=∠CDP
在△APD和△CPD中,
,
∴△APD≌△CPD
(2)
證明:由(1)△APD≌△CPD,
得:∠PAE=∠PCD,
又由DC∥FB得:∠PFA=∠PCD
∴∠PAE=∠PFA
又∵∠APE=∠APF,
∴△APE∽△FPA
(3)
解:線段PC、PE、PF之間的關(guān)系是:PC2=PEPF,
∵△APE∽△FPA,
∴ ,
∴PA2=PEPF,
又∵PC=PA,
∴PC2=PEPF
【解析】(1)由菱形的性質(zhì)得到判定△APD≌△CPD的條件;(2)由△APD≌△CPD判斷出△APE∽△FPA;(3)由△APE∽△FPA得到 ,再等量代換即可.
【考點(diǎn)精析】掌握相似三角形的性質(zhì)和相似三角形的判定是解答本題的根本,需要知道對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形;相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.
(1)在圖(1)中,D是BC邊上的中點(diǎn),判斷DE+DF和BG的關(guān)系,并說明理由.
(2)在圖(2)中,D是線段BC上的任意一點(diǎn),DE+DF和BG的關(guān)系是否仍然成立?如果成立,證明你的結(jié)論;如果不成立,請說明理由.
(3)在圖(3)中,D是線段BC延長線上的點(diǎn),探究DE、DF與BG的關(guān)系.(不要求證明,直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】著名的瑞士數(shù)學(xué)家歐拉曾指出:可以表示為四個(gè)整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為四個(gè)整數(shù)平方之和,即 ,這就是著名的歐拉恒等式,有人稱這樣的數(shù)為“不變心的數(shù)”.實(shí)際上,上述結(jié)論可減弱為:可以表示為兩個(gè)整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為兩個(gè)整數(shù)平方之和.
【動手一試】
試將改成兩個(gè)整數(shù)平方之和的形式. ;
【閱讀思考】
在數(shù)學(xué)思想中,有種解題技巧稱之為“無中生有”.例如問題:將代數(shù)式改成兩個(gè)平方之差的形式.解:原式﹒
【解決問題】
請你靈活運(yùn)用利用上述思想來解決“不變心的數(shù)”問題:將代數(shù)式改成兩個(gè)整數(shù)平方之和的形式(其中a、b、c、d均為整數(shù)),并給出詳細(xì)的推導(dǎo)過程﹒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3,延長CB到點(diǎn)M,使BM=1,連接AM,過點(diǎn)B作BN⊥AM,垂足為N,O是對角線AC,BD的交點(diǎn),連接ON,則ON的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E,F分別在線段AD及其延長線上,且DE=DF.給出下列條件:
①BE⊥EC;②BF∥CE;③AB=AC;
從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是 (只填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD平分∠ABC. 請補(bǔ)全圖形后,依條件完成解答.
(1)在直線BC下方畫∠CBE,使∠CBE與∠ABC互補(bǔ);
(2)在射線BE上任取一點(diǎn)F,過點(diǎn)F畫直線FG∥BD交BC于點(diǎn)G;
(3)判斷∠BFG與∠BGF的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,己知O為坐標(biāo)原點(diǎn),點(diǎn)A(3,0),B(0,4),以點(diǎn)A為旋轉(zhuǎn)中心,把△ABO順時(shí)針旋轉(zhuǎn),得△ACD.記旋轉(zhuǎn)角為α.∠ABO為β.
(Ⅰ)如圖①,當(dāng)旋轉(zhuǎn)后點(diǎn)D恰好落在AB邊上時(shí),求點(diǎn)D的坐標(biāo);
(Ⅱ)如圖②,當(dāng)旋轉(zhuǎn)后滿足BC∥x軸時(shí),求α與β之間的數(shù)量關(guān)系:
(Ⅲ)當(dāng)旋轉(zhuǎn)后滿足∠AOD=β時(shí),求直線CD的解析式(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為數(shù)軸的原點(diǎn),A,B為數(shù)軸上的兩點(diǎn),點(diǎn)A表示的數(shù)為-30,點(diǎn)B表示的數(shù)為100.
(1)A,B兩點(diǎn)間的距離是________.
(2)若點(diǎn)C也是數(shù)軸上的點(diǎn),點(diǎn)C到點(diǎn)B的距離是點(diǎn)C到原點(diǎn)O的距離的3倍,求點(diǎn)C表示的數(shù).
(3)若電子螞蟻P從點(diǎn)B出發(fā),以6個(gè)單位長度/s的速度向左運(yùn)動,同時(shí)另一只電子螞蟻Q恰好從點(diǎn)A出發(fā),以4個(gè)單位長度/s的速度向左運(yùn)動,設(shè)兩只電子螞蟻同時(shí)運(yùn)動到了數(shù)軸上的點(diǎn)D,那么點(diǎn)D表示的數(shù)是多少?
(4)若電子螞蟻P從點(diǎn)B出發(fā),以8個(gè)單位長度/s的速度向右運(yùn)動,同時(shí)另一只電子螞蟻Q恰好從點(diǎn)A出發(fā),以4個(gè)單位長度/s的速度向右運(yùn)動.設(shè)數(shù)軸上的點(diǎn)N到原點(diǎn)O的距離等于點(diǎn)P到原點(diǎn)O的距離的一半(點(diǎn)N在原點(diǎn)右側(cè)),有下面兩個(gè)結(jié)論:①ON+AQ的值不變;②ON-AQ的值不變,請判斷哪個(gè)結(jié)論正確,并求出正確結(jié)論的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個(gè)簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個(gè)問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=50°,則∠ABX+∠ACX=__________°;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com