【題目】如圖,點(diǎn)P是菱形ABCD的對角線BD上一點(diǎn),連接CP并延長交AD于E,交BA的延長線于點(diǎn)F.

(1)求證:△APD≌△CPD;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.

【答案】
(1)

證明:∵ABCD是菱形,

∴DA=DC,∠ADP=∠CDP

在△APD和△CPD中,

,

∴△APD≌△CPD


(2)

證明:由(1)△APD≌△CPD,

得:∠PAE=∠PCD,

又由DC∥FB得:∠PFA=∠PCD

∴∠PAE=∠PFA

又∵∠APE=∠APF,

∴△APE∽△FPA


(3)

解:線段PC、PE、PF之間的關(guān)系是:PC2=PEPF,

∵△APE∽△FPA,

,

∴PA2=PEPF,

又∵PC=PA,

∴PC2=PEPF


【解析】(1)由菱形的性質(zhì)得到判定△APD≌△CPD的條件;(2)由△APD≌△CPD判斷出△APE∽△FPA;(3)由△APE∽△FPA得到 ,再等量代換即可.
【考點(diǎn)精析】掌握相似三角形的性質(zhì)和相似三角形的判定是解答本題的根本,需要知道對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形;相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BGACGDEABE,DFACF

1)在圖(1)中,DBC邊上的中點(diǎn),判斷DE+DFBG的關(guān)系,并說明理由.

2)在圖(2)中,D是線段BC上的任意一點(diǎn),DE+DFBG的關(guān)系是否仍然成立?如果成立,證明你的結(jié)論;如果不成立,請說明理由.

3)在圖(3)中,D是線段BC延長線上的點(diǎn),探究DEDFBG的關(guān)系.(不要求證明,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】著名的瑞士數(shù)學(xué)家歐拉曾指出:可以表示為四個(gè)整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為四個(gè)整數(shù)平方之和,即 ,這就是著名的歐拉恒等式,有人稱這樣的數(shù)為不變心的數(shù).實(shí)際上,上述結(jié)論可減弱為:可以表示為兩個(gè)整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為兩個(gè)整數(shù)平方之和.

【動手一試】

試將改成兩個(gè)整數(shù)平方之和的形式. ;

【閱讀思考】

在數(shù)學(xué)思想中,有種解題技巧稱之為無中生有.例如問題:將代數(shù)式改成兩個(gè)平方之差的形式.解:原式

【解決問題】

請你靈活運(yùn)用利用上述思想來解決不變心的數(shù)問題:將代數(shù)式改成兩個(gè)整數(shù)平方之和的形式(其中ab、c、d均為整數(shù)),并給出詳細(xì)的推導(dǎo)過程﹒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,延長CB到點(diǎn)M,使BM=1,連接AM,過點(diǎn)B作BN⊥AM,垂足為N,O是對角線AC,BD的交點(diǎn),連接ON,則ON的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DBC的中點(diǎn),點(diǎn)E,F分別在線段AD及其延長線上,且DE=DF.給出下列條件:

①BE⊥EC;②BF∥CE;③AB=AC;

從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是 (只填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD平分∠ABC. 請補(bǔ)全圖形后,依條件完成解答.

(1)在直線BC下方畫∠CBE,使∠CBE與∠ABC互補(bǔ);

(2)在射線BE上任取一點(diǎn)F,過點(diǎn)F畫直線FGBDBC于點(diǎn)G;

(3)判斷∠BFG與∠BGF的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,己知O為坐標(biāo)原點(diǎn),點(diǎn)A(3,0),B(0,4),以點(diǎn)A為旋轉(zhuǎn)中心,把△ABO順時(shí)針旋轉(zhuǎn),得△ACD.記旋轉(zhuǎn)角為α.∠ABO為β.

(Ⅰ)如圖①,當(dāng)旋轉(zhuǎn)后點(diǎn)D恰好落在AB邊上時(shí),求點(diǎn)D的坐標(biāo);
(Ⅱ)如圖②,當(dāng)旋轉(zhuǎn)后滿足BC∥x軸時(shí),求α與β之間的數(shù)量關(guān)系:
(Ⅲ)當(dāng)旋轉(zhuǎn)后滿足∠AOD=β時(shí),求直線CD的解析式(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為數(shù)軸的原點(diǎn),A,B為數(shù)軸上的兩點(diǎn),點(diǎn)A表示的數(shù)為-30,點(diǎn)B表示的數(shù)為100.

(1)A,B兩點(diǎn)間的距離是________.

(2)若點(diǎn)C也是數(shù)軸上的點(diǎn),點(diǎn)C到點(diǎn)B的距離是點(diǎn)C到原點(diǎn)O的距離的3倍,求點(diǎn)C表示的數(shù).

(3)若電子螞蟻P從點(diǎn)B出發(fā),以6個(gè)單位長度/s的速度向左運(yùn)動,同時(shí)另一只電子螞蟻Q恰好從點(diǎn)A出發(fā),以4個(gè)單位長度/s的速度向左運(yùn)動,設(shè)兩只電子螞蟻同時(shí)運(yùn)動到了數(shù)軸上的點(diǎn)D,那么點(diǎn)D表示的數(shù)是多少?

(4)若電子螞蟻P從點(diǎn)B出發(fā),以8個(gè)單位長度/s的速度向右運(yùn)動,同時(shí)另一只電子螞蟻Q恰好從點(diǎn)A出發(fā),以4個(gè)單位長度/s的速度向右運(yùn)動.設(shè)數(shù)軸上的點(diǎn)N到原點(diǎn)O的距離等于點(diǎn)P到原點(diǎn)O的距離的一半(點(diǎn)N在原點(diǎn)右側(cè)),有下面兩個(gè)結(jié)論:①ON+AQ的值不變;②ON-AQ的值不變,請判斷哪個(gè)結(jié)論正確,并求出正確結(jié)論的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):

如圖1所示的圖形,像我們常見的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,那么在這一個(gè)簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:

(1)觀察規(guī)形圖,試探究∠BDC與∠A、B、C之間的關(guān)系,并說明理由;

(2)請你直接利用以上結(jié)論,解決以下三個(gè)問題:

①如圖2,把一塊三角尺XYZ放置在ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=50°,則∠ABX+ACX=__________°;

②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,DBE=130°,求∠DCE的度數(shù);

③如圖4,ABD,ACD10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,BG1C=77°,求∠A的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案