【題目】某小區(qū)有兩段長度相等的道路需硬化,現(xiàn)分別由甲、乙兩個工程隊同時開始施工.如圖的線段和折線是兩隊前6天硬化的道路長y甲、y乙(米)與施工時間x(天)之間的函數(shù)圖象
根據(jù)圖象解答下列問題:
(1)直接寫出y甲、y乙(米)與x(天)之間的函數(shù)關系式.
①當0<x≤6時,y甲= ;
②當0<x≤2時,y乙= ;當2<x≤6時,y乙= ;
(2)求圖中點M的坐標,并說明M的橫、縱坐標表示的實際意義;
(3)施工過程中,甲隊的施工速度始終不變,而乙隊在施工6天后,每天的施工速度提高到120米/天,預計兩隊將同時完成任務.兩隊還需要多少天完成任務?
【答案】(1)①、100x;②、150x;50x+200;(2)在4天時,甲乙兩工程隊硬化道路的長度相等,均為400m;(3)5天.
【解析】
試題分析:(1)利用待定系數(shù)法分別求出三個函數(shù)解析式;(2)首先根據(jù)一次函數(shù)列出二元一次方程組,從而求出點M的坐標,得出實際意義;(3)首先設兩隊還需要x天完成任務,然后根據(jù)速度差×天數(shù)=現(xiàn)在的距離差列出一元一次方程,從而求出x的值.
試題解析:(1)100x;150x;50x+200;
(2)根據(jù)題意可得:
解得:
∴M(4,400)
∴M的實際意義:在4天時,甲乙兩工程隊硬化道路的長度相等,均為400m.
(3)設兩隊還需要x天完成任務,由題意可知:(120-100)x=600-500
解得:x=5
答:兩隊還需要5天完成任務.
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行“漢字聽寫”比賽,全體學生都參與,每名學生聽寫39個漢字,比賽結束后,學校隨機抽查了部分學生的聽寫結果,繪制成如下所示的統(tǒng)計表(不完整)和如圖所示的統(tǒng)計圖(不完整) .請根據(jù)題意解答下列問題.
組別 | 正確的個數(shù)x | 人數(shù) |
A | 10 | |
B | 15 | |
C | 25 | |
D | m | |
E | n |
(1)統(tǒng)計表中的m=__,n=___;
(2)請補全頻數(shù)分布直方圖:
(3)在扇形統(tǒng)計圖中,C組所對應扇形的圓心角的度數(shù)是______ ;
(4)已知該校共有1260名學生,如果聽寫漢字正確的個數(shù)少于24定為不合格,那么該校本次比賽不合格的學生人數(shù)大約是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點O為坐標原點,點D為拋物線的頂點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點C逆時針旋轉90°,點A對應點為點G,問點G是否在該拋物線上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為了美化亮化某景點,在兩條筆直的景觀道、上,分別放置了、兩盞激光燈,如圖1所示,燈發(fā)出的光束自逆時針旋轉至便立即回轉:燈發(fā)出的光東自逆時針旋轉至便立即回轉,兩燈不同斷照射,們每秒轉動度,每秒轉動度,且滿足.若這兩條景觀道的道路是平行的,即.
(1)求、的值:
(2)燈先轉動秒,燈才開始轉動,當燈轉動秒時,兩燈的光東和到達如圖1所示的位置,試問和是否平行?請說明理由:
(3)在(2)的情況下,當燈光束第一次達到之前,兩燈的光束是否還能互相平行,如果還能互相平行,那么此時燈旋轉的時間為______秒. (不要求寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從背面相同的同一副撲克牌中取出紅桃9張、黑桃10張、方塊11張,現(xiàn)將這些牌洗勻背面朝上放在桌面上.
(1)求從中抽出一張牌是紅桃的概率;
(2)現(xiàn)從桌面上先抽掉若干張黑桃,再放入與抽掉的黑桃張數(shù)相同的紅桃,并洗勻且背面都朝上排開后,隨機抽一張是紅桃的概率不小于,問至少抽掉了多少張黑桃?
(3)若先從桌面上抽掉9張紅桃和m(m>6)張黑桃后,再在桌面抽出一張牌.
①當m為何值時,事件“再抽出的這張牌是方塊”為必然事件?
②當m為何值時,事件“再抽出的這張牌是方塊”為隨機事件?并求出這個事件的概率的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題14分)如圖(1),在△ABC和△EDC中,D為△ABC邊AC上一點,CA平分∠BCE,BC=CD,AC=CE.
(1)求證:△ABC≌△EDC;
(2)如圖(2),若∠ACB=60°,連接BE交AC于F,G為邊CE上一點,滿足CG=CF,連接DG交BE于H.
①求∠DHF的度數(shù);
②若EB平分∠DEC,試說明:BE平分∠ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O為△ABC的外接圓,直線l與⊙O相切于點P,且∥BC.
(1) 連接PO,并延長交⊙O于點D,連接AD.證明: AD平分∠BAC;
(2) 在(1)的條件下,AD交BC于點E,連接CD.若DE=2,AE=6.試求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com