【題目】如圖,已知直線PA交⊙OA、B兩點,AE是⊙O的直徑,C為⊙O上一點,且AC平分∠PAE,過CCDPA,垂足為D.

(1)求證:CD為⊙O的切線;

(2)CD=2AD,O的直徑為10,求線段AB的長.

【答案】(1)見解析(2)

【解析】

試題(1)要證CD⊙O的切線,只要證CD垂直于對切點的半徑,故作輔助線:連接OC,由三角形三個內(nèi)角和為180°的性質(zhì)和等腰三角形的判定和性質(zhì),即能證出∠DCO =90°,從而得證;

2)要求AB的長,就要考慮它是三角形中的線段或與三角形中的線段有關(guān)系,根據(jù)垂徑定理,只要作OF⊥AB,即有AB=2AF,故只要求出AF即可,由勾股定理和等量代換即可求得.

試題解析:(1)如圖,連接OC,

C⊙O上,OA=OC,∴∠OCA=∠OAC.

∵CD⊥PA∴∠CDA=90°.∴∠CAD+∠DCA=90°.

∵AC平分∠PAE,∴∠DAC=∠CAO.

∴∠DCO=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC="90°."

C⊙O上,OC⊙O的半徑,∴CD⊙O的切線.

2)如圖,過OOF⊥AB,垂足為F,∴∠OCA=∠CDA=∠OFD=90°.

四邊形OCDF為矩形,∴OC=FD,OF=CD.

∵CD=2AD,設(shè)AD=x,則OF=CD=2x,

∵⊙O的直徑為10∴DF=OC=5,∴AF=5-x.

Rt△AOF中,由勾股定理得.

,化簡得:,解得(舍去).

∴AD="2," AF=5-2=3.

∵OF⊥AB,由垂徑定理知,FAB的中點,∴AB=2AF=6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,從點出發(fā)以的速度沿向點勻速移動,點從點出發(fā)以的速度沿向點勻速移動,點從點出發(fā)以的速度沿向點勻速移動.點同時出發(fā),當(dāng)其中一個點到達(dá)終點時,其他兩個點也隨之停止運動,設(shè)移動時間為

1)如圖①,

①當(dāng)為何值時,點為頂點的三角形與全等?并求出相應(yīng)的的值;

②連接交于點,當(dāng)時,求出的值;

2)如圖②,連接交于點.當(dāng)時,證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為緩解交通擁堵,遵義市某區(qū)擬計劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面AD與通道BC平行),通道水平寬度BC為8米,∠BCD=135°,通道斜面CD 的長為6米,通道斜面AB的坡度i=1:

(1)求通道斜面AB的長為多少米;

(2)為增加市民行走的舒適度,擬將設(shè)計圖中的通道斜面CD的坡度變緩,修改后的通道斜面DE的坡角為30°,求此時BE的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=.半徑為2的⊙C, 分別交AC、BC于點D、E,得到 .

(1)求證:AB為⊙C的切線;

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乘法公式的探究及應(yīng)用.

數(shù)學(xué)活動課上,老師準(zhǔn)備了若干個如圖1的三種紙片,A種紙片邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片長為a、寬為b的長方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.

1)請用兩種不同的方法求圖2大正方形的面積.

方法1______;方法2______

2)觀察圖2,請你寫出下列三個代數(shù)式:(a+b2,a2+b2,ab之間的等量關(guān)系.______;

3)類似的,請你用圖1中的三種紙片拼一個圖形驗證:

a+b)(a+2b=a2+3ab+2b2

4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:

①已知:a+b=5,a2+b2=11,求ab的值;

②已知(x-20162+x-20182=34,求(x-20172的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課外閱讀是提高學(xué)生素養(yǎng)的重要途徑,某校為了了解學(xué)生課外閱讀情況,隨機(jī)抽查了50名學(xué)生,統(tǒng)計他們平均每天課外閱讀時間(t小時),根據(jù)t的長短分為A,B,C,D四類.下面是根據(jù)所抽查的人數(shù)繪制的兩幅不完整的統(tǒng)計圖表,請根據(jù)圖中提供的信息,解答下面的問題

(1)求表格中的a,并在圖中補(bǔ)全條形統(tǒng)計圖;

(2)該校現(xiàn)有1300名學(xué)生,請你估計該校共有多少學(xué)生課外閱讀時間不少于1小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,O為直線AB上一點,OC平分∠AOE,DOE=90°,則以下結(jié)論正確的有____________.(只填序號)

①∠AOD與∠BOE互為余角;

OD平分∠COA;

③∠BOE=56°40′,則∠COE=61°40′

④∠BOE=2COD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=k1x+b(k1≠0)的圖象分別與x軸,y軸相交于點A,B,與反比例函數(shù)y2= 的圖象相交于點C(﹣4,﹣2),D(2,4).

(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

(2)當(dāng)x為何值時,y1>0;

(3)當(dāng)x為何值時,y1<y2,請直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中每個小正方形邊長都是1.

(1)畫出ABC關(guān)于直線1對稱的圖形A1BlCl;

(2)在直線l上找一點P,使PB=PC;(要求在直線1上標(biāo)出點P的位置)

(3)連接PA、PC,計算四邊形PABC的面積.

查看答案和解析>>

同步練習(xí)冊答案