【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā)勻速前行,且途中休息一段時間后繼續(xù)以原速前行.家到公園的距離為2000m,如圖是小明和爸爸所走的路程S(m)與步行時間t(min)的函數(shù)圖象.
(1)直接寫出BC段圖象所對應(yīng)的函數(shù)關(guān)系式(不用寫出t的取值范圍).
(2)小明出發(fā)多少時間與爸爸第三次相遇?
(3)在速度都不變的情況下,小明希望比爸爸早18分鐘到達公園,則小明在步行過程中停留的時間需減少 分鐘.
【答案】(1)s=40t﹣400;(2)37.5min; (3)3.
【解析】試題分析:
試題解析:(1)觀察圖象,BC所過的點 ,利用待定系數(shù)法求解.(2)聯(lián)立方程組,求解.(3)求出小明爸爸到達的時間,最后求小明在步行過程中停留的時間.
解:(1)設(shè)直線BC所對應(yīng)的函數(shù)表達式為s=kt+b,
將(30,800),(60,2000)代入得,
,
解得,
∴直線BC所對應(yīng)的函數(shù)表達式為s=40t﹣400.
(2)設(shè)小明的爸爸所走路程s與時間t的函數(shù)關(guān)系式是s=mt+n,
則,解得.
即小明的爸爸所走路程s與時間t的函數(shù)關(guān)系式是s=24t+200,
解方程組,得,
即小明出發(fā)37.5min時與爸爸第三次相遇.
(3)當(dāng)s=2000時,2000=24t+200,得t=75,
∵75﹣60=15,
∴小明希望比爸爸早18min到達公園,則小明在步行過程中停留的時間需要減少3min.
故答案為3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中有一個小島,它的周圍14海里內(nèi)有暗礁,在小島正西方有一點測得在北偏東60°方向上有一燈塔,燈塔在小島北偏東15°方向上20海里處,漁船跟蹤魚群沿方向航行,每小時航行海里.
(1)如果漁船不改變航向繼續(xù)航行,有沒有觸礁危險?請說明理由.
(2)求漁船從點處航行到燈塔,需要多少小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=與一次函數(shù)y=ax+b交于A(3,1)和B(1,m)兩點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)結(jié)合函數(shù)圖象,請直接寫出>ax+b的解集;
(3)若P是x軸上一點,且△ABP的面積是6,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知反比例函數(shù) 與一次函數(shù)y=ax+b(a≠0)的圖象相交于點A(1,8)和B(4,m).
(1)分別求反比例函數(shù)和一次函數(shù)的表達式;
(2)過動點P(n,0)且垂直于x軸的直線分別與反比例函數(shù)圖象和一次函數(shù)圖象交于C、D兩點,當(dāng)點C位于點D下方時,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.
(1)求證:∠AEB=∠ADC;
(2)連接DE,若∠ADC=105°,求∠BED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為BC邊上一點,DF⊥AE于F,BG⊥AE于G.
(1)求證:DF=BG+FG.
(2)連接FC,CG,若四邊形DCGF的面積為40,求FC的長.
(3)在(2)的條件下,若AG=7,P為FC的延長線上任一點,連PD、PG,直接寫出的值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要使平行四邊形ABCD成為菱形,需添加的條件是( 。
A. AC=BD B. ∠1=∠2 C. ∠ABC=90° D. ∠1=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初中要調(diào)查學(xué)校學(xué)生(總數(shù) 1000 人)雙休日課外閱讀情況,隨機調(diào)查了一部分學(xué)生,調(diào)查得 到的數(shù)據(jù)分別制成頻數(shù)直方圖(如圖 1)和扇形統(tǒng)計圖(如圖 2).
(1)請補全上述統(tǒng)計圖(直接填在圖中);
(2) 試確定這個樣本的中位數(shù)和眾數(shù);
(3)請估計該學(xué)校 1000 名學(xué)生雙休日課外閱讀時間不少于 4 小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:矩形ABCD中,AB=4,BC=3,點M、N分別在邊AB、CD上,直線MN交矩形對角線 AC于點E,將△AME沿直線MN翻折,點A落在點P處,且點P在射線CB上.
(1)如圖1,當(dāng)EP⊥BC時,求CN的長;
(2) 如圖2,當(dāng)EP⊥AC時,求AM的長;
(3) 請寫出線段CP的長的取值范圍,及當(dāng)CP的長最大時MN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com