【題目】已知a是最大的負(fù)整數(shù),b是-5的相反數(shù),c=,且a、b、c分別是點(diǎn)A、B、C在數(shù)軸上對(duì)應(yīng)的數(shù).若動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)也沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒1個(gè)單位長(zhǎng)度.
(1)求a、b、c的值;
(2)P、Q同時(shí)出發(fā),求運(yùn)動(dòng)幾秒后,點(diǎn)P可以追上點(diǎn)Q?
(3)在(2)的條件下,P、Q出發(fā)的同時(shí),動(dòng)點(diǎn)M從點(diǎn)C出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),速度為每秒6個(gè)單位長(zhǎng)度,點(diǎn)M追上點(diǎn)Q后立即返回沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),追上后點(diǎn)M再運(yùn)動(dòng)幾秒,M到Q的距離等于M到P距離的兩倍?
【答案】(1)a=-1,b=5,c=-3;(2)t=3s;(3)t=或s
【解析】
(1)由已知條件即可確定a、b、c的值;
(2)由題意,可知A點(diǎn)表示的數(shù)是-1,B點(diǎn)表示的數(shù)是5,設(shè)運(yùn)動(dòng)t秒后,P點(diǎn)對(duì)應(yīng)的數(shù)是-1+3t,Q點(diǎn)對(duì)應(yīng)的數(shù)是5+t,相遇時(shí)兩點(diǎn)表示同一個(gè)數(shù);
(3),t秒后,M點(diǎn)對(duì)應(yīng)的數(shù)是-3+6t,可求M、Q相遇時(shí)間,當(dāng)M向數(shù)軸負(fù)半軸運(yùn)動(dòng)后,M點(diǎn)對(duì)應(yīng)的數(shù)是6.6-6(t-1.6)=-6t+16.2,根據(jù)題意列出方程7t-11.2=2|9t-17.2|,再結(jié)合t的范圍求解.
解:(1)∵a是最大的負(fù)整數(shù),
∴a=-1,
∵b是-5的相反數(shù),
∴b=5,
∵c=-|-3|,
∴c=-3;
(2)由題意,可知A點(diǎn)表示的數(shù)是-1,B點(diǎn)表示的數(shù)是5,
設(shè)運(yùn)動(dòng)t秒后,P點(diǎn)對(duì)應(yīng)的數(shù)是-1+3t,Q點(diǎn)對(duì)應(yīng)的數(shù)是5+t,
P點(diǎn)追上Q點(diǎn)時(shí),兩個(gè)點(diǎn)表示的數(shù)相同,
∴-1+3t=5+t,
∴t=3,
∴求運(yùn)動(dòng)3秒后,點(diǎn)P可以追上點(diǎn)Q;
(3)由(2)知,t秒后,M點(diǎn)對(duì)應(yīng)的數(shù)是-3+6t,
當(dāng)M點(diǎn)追上Q點(diǎn)時(shí),5+t=-3+6t,
∴t=1.6,
此時(shí)M點(diǎn)對(duì)應(yīng)的數(shù)是6.6,
此后M點(diǎn)向數(shù)軸負(fù)半軸運(yùn)動(dòng),M點(diǎn)對(duì)應(yīng)的數(shù)是6.6-6(t-1.6)=-6t+16.2,
MQ=5+t-(-6t+16.2)=7t-11.2,
MP=|-6t+16.2+1-3t|=|9t-17.2|,
由題意,可得7t-11.2=2|9t-17.2|,
當(dāng)時(shí),7t-11.2=18t-34.4,
∴t=
當(dāng)時(shí),7t-11.2=-18t+34.4,
∴t=;
∴t=或t=,
∴,,
∴追上后,再經(jīng)過s或s,M到Q的距離等于M到P距離的兩倍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)a在數(shù)軸上表示的點(diǎn)在原點(diǎn)左側(cè),距離原點(diǎn)3個(gè)單位長(zhǎng),b在數(shù)軸上表示的點(diǎn)在原點(diǎn)右側(cè),距離原點(diǎn)2個(gè)單位長(zhǎng),c和d互為倒數(shù),m與n互為相反數(shù),y為最大的負(fù)整數(shù),求(y+b)2+m(a-cd)-nb2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣州火車南站廣場(chǎng)計(jì)劃在廣場(chǎng)內(nèi)種植A,B兩種花木共 6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵.
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時(shí)種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時(shí)完成各自的任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過A(1,0)、B(3,0)作x軸的垂線,分別交直線y=﹣x+4于C、D兩點(diǎn).拋物線y=ax2+bx+c經(jīng)過O、C、D三點(diǎn).
(1)求拋物線的表達(dá)式;
(2)點(diǎn)M為直線OD上的一個(gè)動(dòng)點(diǎn),過M作x軸的垂線交拋物線于點(diǎn)N,問是否存在這樣的點(diǎn)M,使得以A、C、M、N為頂點(diǎn)的四邊形為平行四邊形?若存在,求此時(shí)點(diǎn)M的橫坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若△AOC沿CD方向平移(點(diǎn)C在線段CD上,且不與點(diǎn)D重合),在平移的過程中△AOC與△OBD重疊部分的面積記為S,試求S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。
現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。
(1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個(gè)盒子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
數(shù)軸上線段的長(zhǎng)度可以用線段端點(diǎn)表示的數(shù)進(jìn)行減法運(yùn)算得到,例如圖,線段AB=1=0﹣(﹣1);線段 BC=2=2﹣0;線段 AC=3=2﹣(﹣1)問題
①數(shù)軸上點(diǎn)M、N代表的數(shù)分別為﹣9和1,則線段MN= ;
②數(shù)軸上點(diǎn)E、F代表的數(shù)分別為﹣6和﹣3,則線段EF= ;
③數(shù)軸上的兩個(gè)點(diǎn)之間的距離為5,其中一個(gè)點(diǎn)表示的數(shù)為2,則另一個(gè)點(diǎn)表示的數(shù)為m,求m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線=(≠0)與軸交于AB兩點(diǎn),與軸交于C點(diǎn),其對(duì)稱軸為=1,且A(-1,0)C(0,2).
(1)直接寫出該拋物線的解析式;
(2)P是對(duì)稱軸上一點(diǎn),△PAC的周長(zhǎng)存在最大值還是最小值?請(qǐng)求出取得最值(最大值或最小值)時(shí)點(diǎn)P的坐標(biāo);
(3)設(shè)對(duì)稱軸與軸交于點(diǎn)H,點(diǎn)D為線段CH上的一動(dòng)點(diǎn)(不與點(diǎn)CH重合).點(diǎn)P是(2)中所求的點(diǎn).過點(diǎn)D作DE∥PC交軸于點(diǎn)E.連接PDPE.若CD的長(zhǎng)為,△PDE的面積為S,求S與之間的函數(shù)關(guān)系式,試說明S是否存在最值,若存在,請(qǐng)求出最值,并寫出S取得的最值及此時(shí)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),點(diǎn)F、G是邊AC的三等分點(diǎn),DF、EG的延長(zhǎng)線相交于點(diǎn)H,連接HA、HC.
(1)求證:四邊形FBGH是菱形;
(2)求證:四邊形ABCH是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn),在數(shù)軸上分別表示有理數(shù),,,兩點(diǎn)之間的距離表示為,在數(shù)軸上,兩點(diǎn)之間的距離.已知數(shù)軸上,兩點(diǎn)表示數(shù),滿足,點(diǎn)為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為.
(1),兩點(diǎn)之間的距離是.
(2)與之間的距離表示為.
(3)數(shù)軸上是否存在點(diǎn),使點(diǎn)到點(diǎn),點(diǎn)的距離之和為?若存在,請(qǐng)求出的值;若不存在,說明理由.
(4)現(xiàn)在點(diǎn),點(diǎn)分別以單位/秒和單位/秒的速度同時(shí)向右運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)之間的距離為個(gè)單位長(zhǎng)度時(shí),求點(diǎn)所對(duì)應(yīng)的數(shù)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com