【題目】解答題
(1)如圖1,已知△ABC,以AB,AC為邊分別向△ABC外作等邊△ABD和等邊△ACE,連結(jié)BE,CD,請(qǐng)你完成圖形(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡),并證明:BE=CD;
(2)如圖2,利用(1)中的方法解決如下問(wèn)題:在四邊形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,求BD的長(zhǎng).
(3)如圖3,四邊形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα= ,CD=5,AD=12,求BD的長(zhǎng).
【答案】
(1)
證明:如圖1,分別以點(diǎn)A、B為圓心,以AB為半徑畫(huà)弧,交于點(diǎn)D,連接AD、BD,再分別以A、C為圓心,以AC為半徑畫(huà)弧,交于點(diǎn)E,連接AE、CE,則△ABD、△ACE就是所求作的等邊三角形;
證明:如圖1,∵△ABD和△ACE都是等邊三角形,
∴AD=AB,AC=AE,∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
∴△DAC≌△BAE(SAS),
∴BE=CD
(2)
解:如圖2,過(guò)A作AE⊥AD,使AD=AE=3,連接DE、CE,
由勾股定理得:DE= =3 ,
∴∠EDA=45°,
∵∠ADC=45°,
∴∠EDC=∠EDA+∠ADC=90°,
∵∠ACB=∠ABC=45°,
∴∠CAB=90°,
∴∠CAB+∠DAC=∠EAD+∠DAC,
即∠EAC=∠DAB,
∵AE=AD,AC=AB,
∴△DAB≌△EAC(SAS),
∴EC=BD,
在Rt△DCE中,EC= = = ,
∴BD=EC=
(3)
解:如圖3,作直角三角形DAE,使得∠DAE=90°,
∠EDA=∠ABC,連接EC,
容易得到△DAE∽△BAC,
∴ ,即 ,
∵∠DAE=∠BAC=90°,
∴∠DAE+∠DAC=∠BAC+∠DAC,即∠EAC=∠DAB,
∴△EAC∽△DAB,
∴ ,
在△DCE中,∠ADC=∠ACB,
∠EDA=∠ABC,
∴∠EDC=90°,
∵ ,AD=12,
∴AE=9,∠DAE=90°,
∴DE= =15,
CE= =5 ,
由△EAC∽△DAB,
∴
BD= .
【解析】(1)作圖:分別以點(diǎn)A、B為圓心,以AB為半徑畫(huà)弧,交于點(diǎn)D,連接AD、BD;再分別以A、C為圓心,以AC為半徑畫(huà)弧,交于E,連接AE、CE,則△ABD、△ACE就是所求作的等邊三角形;
利用等邊三角形的性質(zhì)證明△DAC≌△BAE可以得出結(jié)論;(2)如圖2,作輔助線后,證明△DAB≌△EAC得:EC=BD,在Rt△DCE中,利用勾股定理求EC的長(zhǎng),則BD=EC= ;(3)如圖3,構(gòu)建直角△DAE,根據(jù)同角的三角函數(shù)求AE和DE的長(zhǎng),從而可以得到EC的長(zhǎng),利用三角形相似可以得BD的長(zhǎng).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用相似三角形的應(yīng)用的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)C在以AB為直徑的半圓上,∠CAB的平分線AD交BC于點(diǎn)D,⊙O經(jīng)過(guò)A、D兩點(diǎn),且圓心O在AB上.
(1)求證:BD是⊙O的切線.
(2)若 , ,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點(diǎn),以O(shè)為圓心的半圓與AB邊相切于點(diǎn)D,與AC、BC邊分別交于點(diǎn)E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD= .
(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一游戲棋盤(pán)和一個(gè)質(zhì)地均勻的正四面體骰子(各面依次標(biāo)有1,2,3,4四個(gè)數(shù)字).游戲規(guī)則是游戲者每擲一次骰子,棋子按著地一面所示的數(shù)字前進(jìn)相應(yīng)的格數(shù).例如:若棋子位于A處,游戲者所擲骰子著地一面所示數(shù)字為3,則棋子由A處前進(jìn)3個(gè)方格到達(dá)B處.請(qǐng)用畫(huà)樹(shù)形圖法(或列表法)求擲骰子兩次后,棋子恰好由A處前進(jìn)6個(gè)方格到達(dá)C處的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)部一個(gè)動(dòng)點(diǎn),∠APB=120°,⊙O是△APB的外接圓.AP,BP的延長(zhǎng)線分別交BC,AC于D,E.
(1)求證:CA,CB是⊙O的切線;
(2)已知AB=6,G在BC上,BG=2,當(dāng)PG取得最小值時(shí),求PG的長(zhǎng)及∠BGP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)2﹣(﹣4)+3
(2)﹣32÷(﹣2)3
(3)(﹣+)×12
(4)﹣13+[(﹣4)2﹣(1﹣32)×2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,則下列結(jié)論中不正確的是( )
A.∠B=48°
B.∠AED=66°
C.∠A=84°
D.∠B+∠C=96°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對(duì)角線DB重合,點(diǎn)A落在點(diǎn)A′處,折痕為DE,則A′E的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明平時(shí)喜歡玩“QQ農(nóng)場(chǎng)”游戲,本學(xué)期初二年級(jí)數(shù)學(xué)備課組組織了幾次數(shù)學(xué)反饋性測(cè)試,小明的數(shù)學(xué)成績(jī)?nèi)缦卤恚?/span>
月份x(月) | 9 | 10 | 11 | 12 | … |
成績(jī)y(分) | 90 | 80 | 70 | 60 | … |
(1)以月份為x軸,成績(jī)?yōu)?/span>y軸,根據(jù)上表提供的數(shù)據(jù)在下列直角坐標(biāo)系中描點(diǎn);
(2)觀察①中所描點(diǎn)的位置關(guān)系,照這樣的發(fā)展趨勢(shì),猜想y與x之間的函數(shù)關(guān)系,并求出所猜想的函數(shù)表達(dá)式;
(3)若小明繼續(xù)沉溺于“QQ農(nóng)場(chǎng)”游戲,照這樣的發(fā)展趨勢(shì),請(qǐng)你估計(jì)元月份的期末考試中小明的數(shù)學(xué)成績(jī),并用一句話對(duì)小明提出一些建議.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com