【題目】如圖,△ABC是等腰直角三角形,∠BAC=90°,BE是△ABC的角平分線,ED⊥BC于點D,連接AD.
(1)請你寫出圖中所有的等腰三角形;
(2)若BC=10,求AB+AE的長.
【答案】(1)見解析;(2) AB+AE=10.
【解析】
(1)如圖,根據(jù)△ABC是等腰直角三角形可知∠8=45°,由ED⊥BC可知∠7=∠8=45°,由此得到△DCE為等腰三角形;由角平分線的性質(zhì)可知AE=DE,由此得到△AED為等腰三角形;同理可得△ABD為等腰三角形;
(2)由于△AED為等腰三角形,△ABD為等腰三角形,利用等腰三角形的性質(zhì)即可證明AB+AE=BD+CD=BC,然后就可以求出AB+AE的長.
(1)如圖,∵△ABC是等腰直角三角形,∠BAC=90°,
∴∠ABC=∠C=45°.
又∵ED⊥BC,
∴∠EDC=90°,
∴∠7=∠C=45°,
∴DE=DC,
故△DCE為等腰直角三角形.
∵BE是△ABC的角平分線,∠BAC=∠BDE=90°,
∴AE=DE,
∴△ADE為等腰三角形.
∵BE是△ABC的角平分線,
∴∠1=∠2.
又∵∠BAE=∠BDE=90°,BE=BE,
∴△ABE≌△DBE,
∴AB=DB,
∴△ABD為等腰三角形.
故圖中所有的等腰三角形為△ABC,△DCE,△ADE,△ABD,共4個.
(2)由(1)可知△ADE為等腰三角形,△ABD為等腰三角形,△DCE為等腰三角形,故AB=DB,AE=DE=DC,∴AB+AE=DB+DC=BC=10.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一個含有45°角的直角三角板的直角頂點放在一張寬為2cm的矩形紙帶邊沿上,另一個頂點在紙帶的另一邊沿上.若測得三角板的一邊與紙帶的一邊所在的直線成30°角,則三角板最長邊的長是( )
A. 2cm B. 4cm C. 2cm D. 4cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下是兩張不同類型火車的車票:(“D×××次”表示動車,“G×××次”表示高鐵):
(1)根據(jù)車票中的信息填空:兩車行駛方向 ,出發(fā)時刻 (填“相同”或“不同”);
(2)已知該動車和高鐵的平均速度分別為200km/h,300km/h,如果兩車均按車票信息準時出發(fā),且同時到達終點,求A,B兩地之間的距離;
(3)在(2)的條件下,請求出在什么時刻兩車相距100km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知多項式3x6﹣2x2﹣4的常數(shù)項為a,次數(shù)為b.
(1)設(shè)a與b分別對應(yīng)數(shù)軸上的點A、點B,請直接寫出a= ,b= ,并在數(shù)軸上確定點A、點B的位置;
(2)在(1)的條件下,點P以每秒2個單位長度的速度從點A向B運動,運動時間為t秒:
①若PA﹣PB=6,求t的值,并寫出此時點P所表示的數(shù);
②若點P從點A出發(fā),到達點B后再以相同的速度返回點A,在返回過程中,求當OP=3時,t為何值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,AM∥CN,點 B 為平面內(nèi)一點,AB⊥BC 于 B,過 B 作 BD⊥ AM.
(1)求證:∠ABD=∠C;
(2)如圖 2,在(1)問的條件下,分別作∠ABD、∠DBC 的平分線交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,
①求證:∠ABF=∠AFB;
②求∠CBE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一副“弦圖”,后人稱其為“趙爽弦圖”(如圖1).圖2由弦圖變化得到,它是由八個全等的直角三角形拼接而成.記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=10,則S2的值是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com