【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分線,DE⊥AB,垂足為E.
(1)已知CD=4cm,求AC的長(zhǎng);
(2)求證:AB=AC+CD.
【答案】(1);(2)證明見(jiàn)試題解析.
【解析】
試題分析:(1)由角平分線的性質(zhì)可知CD=DE=4cm,由于∠C=90°,故∠B=∠BDE=45°,△BDE是等腰直角三角形,由勾股定理得可得BD,AC的值;
(2)由(1)可知:△ACD≌△AED,AC=AE,BE=DE=CD,故AB=AE+BE=AC+CD.
試題解析:(1)∵AD是△ABC的角平分線,DC⊥AC,DE⊥AB,∴DE=CD=4cm,又∵AC=BC,∴∠B=∠BAC,又∵∠C=90°,∴∠B=∠BDE=45°,∴BE=DE=4cm.
在等腰直角三角形BDE中,由勾股定理得,BD=cm,∴AC=BC=CD+BD=(cm).
(2)∵AD是△ABC的角平分線,DC⊥AC,DE⊥AB,∴∠ADE=∠ADC,∴AC=AE,又∵BE=DE=CD,∴AB=AE+BE=AC+CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校課外興趣小組在本校學(xué)生中開(kāi)展“感動(dòng)中國(guó)2014年度人物”先進(jìn)事跡知曉情況專題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷調(diào)查的結(jié)果分為A、B、C、D四類.其中,A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,劃分類別后的數(shù)據(jù)整理如下表:
類別 | A | B | C | D |
頻數(shù) | 30 | 40 | 24 | b |
頻率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a=________,b=________;
(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計(jì)圖中類別為B的學(xué)生數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生中類別為C的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文化商店計(jì)劃同時(shí)購(gòu)進(jìn)A、B兩種儀器,若購(gòu)進(jìn)A種儀器2臺(tái)和B種儀器3臺(tái),共需要資金1700元;若購(gòu)進(jìn)A種儀器3臺(tái),B種儀器1臺(tái),共需要資金1500元.
(1)求A、B兩種型號(hào)的儀器每臺(tái)進(jìn)價(jià)各是多少元?
(2)已知A種儀器的售價(jià)為760元/臺(tái),B種儀器的售價(jià)為540元/臺(tái).該經(jīng)銷商決定在成本不超過(guò)30000元的前提下購(gòu)進(jìn)A、B兩種儀器,若B種儀器是A種儀器的3倍還多10臺(tái),那么要使總利潤(rùn)不少于21600元,該經(jīng)銷商有哪幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(0,3),B(0,1),C(2,1).若將三角形ABC向左平移3個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度得到三角形A′B′C′.
(1)寫出三角形A′B′C′各頂點(diǎn)的坐標(biāo);
(2)畫出三角形ABC和三角形A′B′C′;
(3)求出三角形A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊△ABC,點(diǎn)D和點(diǎn)B關(guān)于直線AC軸對(duì)稱.點(diǎn)M(不同于點(diǎn)A和點(diǎn)C)在射線CA上,線段DM的垂直平分線交直線BC的于N,
(1)如圖,過(guò)點(diǎn)D作DE⊥BC,交BC的延長(zhǎng)線于E,若CE=5,求BC的長(zhǎng);
(2)如圖,若點(diǎn)M在線段AC上,求證:△DMN為等邊三角形;
(3)連接CD,BM,若,直接寫出 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=sinx·cosy+cosx·siny.據(jù)此判斷下列等式成立的是_________(填序號(hào)).
①cos(-60°)=—cos60°=
②sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°=
③sin2x=sin(x+x)=sinx·cosx+cosx·sinx=2sinx·cosx;
④sin(x-y)=sinx·cosy-cosx·siny.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問(wèn)題:
已知:∠ACB是△ABC的一個(gè)內(nèi)角.
求作:∠APB=∠ACB.
小路的作法如下:
老師說(shuō):“小路的作法正確.”
請(qǐng)回答:(1)點(diǎn)O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;
(2)∠APB=∠ACB的依據(jù)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,六邊形 ABCDEF 中,∠A+∠B+∠C=∠D+∠E+∠F,猜想可 得六邊形 ABCDEF 中必有兩條邊是平行的.
(1)根據(jù)圖形寫出你的猜想: ∥ ;
(2)請(qǐng)證明你在(1)中寫出的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年5月16日,第十五屆文博會(huì)在深圳拉開(kāi)帷幕,周末,小明騎共享單車從家里出發(fā)去分會(huì)館參觀,途中突然發(fā)現(xiàn)鑰匙不見(jiàn)了,于是原路折返,在剛才等紅綠燈的路口找到了鑰匙,便繼續(xù)前往分會(huì)館,設(shè)小明從家里出發(fā)到分會(huì)場(chǎng)所用的時(shí)間為x(分鐘),離家的距離為y(米),且x與y的關(guān)系示意圖如圖所示,請(qǐng)根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)圖中自變量是 .因變量是 .
(2)小明等待紅綠燈花了 分鐘.
(3)小明的家距離分會(huì)館 米
(4)小明在 時(shí)間段的騎行速度最快,最快速度是 米/分鐘.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com