如圖,經(jīng)過點A(0,-4)的拋物線y=x2+bx+c與x軸相交于點B(-0,0)和C,O為坐標原點.
(1)求拋物線的解析式;
(2)將拋物線y=x2+bx+c向上平移個單位長度、再向左平移m(m>0)個單位長度,得到新拋物
線.若新拋物線的頂點P在△ABC內(nèi),求m的取值范圍;
(3)設點M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.
解:(1)將A(0,-4)、B(-2,0)代入拋物線y=x2+bx+c中,得:
,解得,。
∴拋物線的解析式:y=x2-x-4。源:ZXXK]
(2)由題意,新拋物線的解析式可表示為:,
即:。它的頂點坐標P(1-m,-1)。
由(1)的拋物線解析式可得:C(4,0)。
∴直線AB:y=-2x-4;直線AC:y=x-4。
當點P在直線AB上時,-2(1-m)-4=-1,解得:m=;
當點P在直線AC上時,(1-m)+4=-1,解得:m=-2;
又∵m>0,
∴當點P在△ABC內(nèi)時,0<m< 。
(3)由A(0,-4)、B(4,0)得:OA=OC=4,且△OAC是等腰直角三角形。
如圖,在OA上取ON=OB=2,則∠ONB=∠ACB=45°。
∴∠ONB=∠NBA+OAB=∠ACB=∠OMB+∠OAB,
即∠ONB=∠OMB。
如圖,在△ABN、△AM1B中,
∠BAN=∠M1AB,∠ABN=∠AM1B,
∴△ABN∽△AM1B,得:AB2=AN•AM1;
由勾股定理,得AB2=(-2)2+42=20,
又AN=OA-ON=4-2=2,
∴AM1=20÷2=10,OM1=AM1-OA=10-4=6。
而∠BM1A=∠BM2A=∠ABN,∴OM1=OM2=6,AM2=OM2-OA=6-4=2。
綜上,AM的長為6或2。
【解析】二次函數(shù)綜合題,曲線上點的坐標與方程的關系,平移的性質,二次函數(shù)的性質,等腰直角三角形的判定和性質,勾股定理。
【分析】(1)該拋物線的解析式中只有兩個待定系數(shù),只需將A、B兩點坐標代入即可得解。
(2)首先根據(jù)平移條件表示出移動后的函數(shù)解析式,從而用m表示出該函數(shù)的頂點坐標,將其
代入直線AB、AC的解析式中,即可確定P在△ABC內(nèi)時m的取值范圍。
(3)先在OA上取點N,使得∠ONB=∠ACB,那么只需令∠NBA=∠OMB即可,顯然在y軸的正負半軸上都有一個符合條件的M點;以y軸正半軸上的點M為例,先證△ABN、△AMB相似,然后通過相關比例線段求出AM的長。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
1 |
2 |
1 |
2 |
7 |
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
k |
x |
3 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com