【題目】如圖,是半徑為的上的定點,動點從出發(fā),以的速度沿圓周逆時針運動,當點回到地立即停止運動.
(1)如果,求點運動的時間;
(2)如果點是延長線上的一點,,那么當點運動的時間為時,判斷直線與的位置關(guān)系,并說明理由.
【答案】(1)或(2)直線與相切,理由見解析
【解析】
(1)當∠POA=90°時,點P運動的路程為⊙O周長的或,所以分兩種情況進行分析;
(2)直線BP與⊙O的位置關(guān)系是相切,根據(jù)已知可證得OP⊥BP,即直線BP與⊙O相切.
解:(1)當∠POA=90°時,根據(jù)弧長公式可知點P運動的路程為⊙O周長的或,設(shè)點P運動的時間為ts;
當點P運動的路程為⊙O周長的時,2πt=2π12,
解得t=3;
當點P運動的路程為⊙O周長的時,2πt=2π12,
解得t=9;
∴當∠POA=90°時,點P運動的時間為3s或9s.
(2)如圖,當點P運動的時間為2s時,直線BP與⊙O相切
理由如下:
當點P運動的時間為2s時,點P運動的路程為4πcm,
連接OP,PA;
∵半徑AO=12cm,
∴⊙O的周長為24πcm,
∴的長為⊙O周長的,
∴∠POA=60°;
∵OP=OA,
∴△OAP是等邊三角形,
∴OP=OA=AP,∠OAP=60°;
∵AB=OA,
∴AP=AB,
∵∠OAP=∠APB+∠B,
∴∠APB=∠B=30°,
∴∠OPB=∠OPA+∠APB=90°,
∴OP⊥BP,
∴直線BP與⊙O相切.
科目:初中數(shù)學 來源: 題型:
【題目】北京時間2020年5月12日9時16分,我國自主研制的快舟一號甲運載火箭在酒泉衛(wèi)星發(fā)射中心發(fā)射成功.此次發(fā)射的“行云二號”01星命名為“行云·武漢號”,并通過在火箭箭體上涂刷“英雄武漢偉大中國”和“致敬醫(yī)護工作者群像”的方式,致敬武漢、武漢人民和廣大醫(yī)護工作者.如圖,火箭從地面L處發(fā)射,當火箭達到A點時,從位于地面R處雷達站測得AR的距離是6km,仰角為42.4°;1秒后火箭到達B點,此時測得仰角為45.5°求這枚火箭從A到B的平均速度是多少(結(jié)果精確到0.01)?(參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.
(1)求證:DE是⊙O的切線.
(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 拋物線與軸交于點A(-1,0),頂點坐標(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為
A. 1 個 B. 2 個 C. 3 個 D. 4 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①;②;③;④.其中正確的結(jié)論是( )
A.①②B.①③C.①③④D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了做好“營造清潔生活環(huán)境”活動的宣傳,對本校學生進行了有關(guān)知識的測試,測試后隨機抽取了部分學生的測試成績,按“優(yōu)秀、良好、及格、不及格”四個等級進行統(tǒng)計分析,并將分析結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖:
(1)求抽取的學生總?cè)藬?shù);
(2)抽取的學生中,等級為“優(yōu)秀”的人數(shù)為 人;扇形統(tǒng)計圖中等級為“不合格”部分的圓心角的度數(shù)為 °;
(3)補全條形統(tǒng)計圖;
(4)若該校有學生3500人,請根據(jù)以上統(tǒng)計結(jié)果估計成績等級為“優(yōu)秀”和“良好”的學生共有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形的邊長為,點為正方形的中心,點為邊上一動點,直線交于點,過點作,垂足為點,連接,則的最小值為( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)證明推斷:如圖①,在△ABC中,D,E分別是邊BC,AB的中點,AD,CE相交于點G,求證:.
(2)類比探究:如圖②,在正方形ABCD中,對角線AC、BD交于點O,E為邊BC的中點,AE、BD交于點F,若AB=6,求OF的長;
(3)拓展運用:若正方形ABCD變?yōu)?/span>□ABCD,如圖③,連結(jié)DE交AC于點G,若四邊形OFEG的面積為,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店經(jīng)銷甲、乙兩種不同的筆記本,已知:兩種筆記本的進價之和為10元,甲種筆記本每本獲利2元,乙種筆記本每本獲利1元,小玲同學買4本甲種筆記本和3本乙種筆記本共用了47元.
(1)甲、乙兩種筆記本的進價分別是多少元?
(2)該文具店購入這兩種筆記本共60本,花費不超過296元,則購買甲種筆記本多少本時文具店獲利最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com