分析 由∠C=90°,AD是∠BAC的角平分線,DE⊥AB,根據(jù)角平分線的性質(zhì),即可得CD=DE,又由在△ABC中,AC=BC,∠C=90°,根據(jù)等腰三角形的性質(zhì),可求得AC=BC,∠B=45°,然后利用三角函數(shù),即可求得AC的長(zhǎng).
解答 解:∵∠C=90°,AD是∠BAC的角平分線,DE⊥AB,
∴DE=CD=2,
∵在△ABC中,AC=BC,∠C=90°,
∴∠CAB=∠B=45°,
∴∠EDB=∠B=45°,
∴sin∠B=sin45°=$\frac{DE}{BD}$=$\frac{2}{BD}$=$\frac{\sqrt{2}}{2}$,
∴BD=2$\sqrt{2}$,
∴AC=BC=CD+BD=2+$2\sqrt{2}$(cm),
故答案為:2+$2\sqrt{2}$(cm).
點(diǎn)評(píng) 此題考查了角平分線的性質(zhì),等腰直角三角形的性質(zhì)以及三角函數(shù)等知識(shí).此題難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意角平分線定理的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com