【題目】如圖所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點B,與OA交于點P,且OA2﹣AB2=18,則點P的橫坐標為(
A.9
B.6
C.3
D.3

【答案】C
【解析】解:設點B(a,b), ∵△OAC和△BAD都是等腰直角三角形,
∴OA= AC,AB= AD,OC=AC,AD=BD,
∵OA2﹣AB2=18,
∴2AC2﹣2AD2=18即AC2﹣AD2=9
∴(AC+AD)(AC﹣AD)=9,
∴(OC+BD)CD=9,
∴ab=9,
∴k=9,
∴反比例函數(shù)y= ,
∵△OAC是等腰直角三角形,
∴直線OA的解析式為y=x,
,
∴P(3,3),
故選C.
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié),在大明湖舉行第七屆會民健身運動會龍舟比賽中,甲、乙兩隊在500米的賽道上,所劃行的路程y(m)與時間x(min)之間的函數(shù)關系如圖所示,下列說法,其中正確的有( 。

乙隊比甲隊提前0.25min到達終點;

0.5min后,乙隊比甲隊每分鐘快40m;

當乙隊劃行110m時,此時落后甲隊15m;

自1.5min開始,甲隊若要與乙隊同時到達終點,甲隊的速度需要提高到260m/min.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C,E,F(xiàn),B在同一直線上,點A,DBC異側(cè),AB∥CD,AE=DF,∠A=∠D.

(1)求證:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗中學現(xiàn)有學生2870人,學校為了進一步豐富學生課余生活,擬調(diào)查各興趣小組活動情況,為此校學生會委托小容、小易進行一次隨機抽樣調(diào)查.根據(jù)采集到的數(shù)據(jù),小容繪制的統(tǒng)計圖1,小易繪制的統(tǒng)計圖2(不完整)如下: 請你根據(jù)統(tǒng)計圖1、2中提供的信息,

解答下列問題:
(1)寫出2條有價值信息(不包括下面要計算的信息);
(2)這次抽樣調(diào)查的樣本容量是多少?在圖2中,請將小易畫的統(tǒng)計圖中的“體育”部分的圖形補充完整;
(3)愛好“書畫”的人數(shù)占被調(diào)查人數(shù)的百分數(shù)是多少?估計實驗中學現(xiàn)有的學生中,有多少人愛好“書畫”?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關系.

小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
(1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關系,并證明;

(2)如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,點E,F(xiàn)分別在BC,CD上,將△ABE沿AE折疊,使點B落在AC上的點B′處,又將△CEF沿EF折疊,使點C落在直線EB′與AD的交點C′處,DF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(背景知識)

數(shù)軸是初中數(shù)學的一個重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:

例如,若數(shù)軸上點、點表示的數(shù)分別為、,則、兩點之間的距離,線段的中點表示的數(shù)為

(問題情境)

在數(shù)軸上,點表示的數(shù)為-20,點表示的數(shù)為10,動點從點出發(fā)沿數(shù)軸正方向運動,同時,動點也從點出發(fā)沿數(shù)軸負方向運動,已知運動到4秒鐘時,兩點相遇,且動點運動的速度之比是(速度單位:單位長度/秒).

備用圖

(綜合運用)

1)點的運動速度為______單位長度/秒,點的運動速度為______單位長度/秒;

2)當時,求運動時間;

3)若點、在相遇后繼續(xù)以原來的速度在數(shù)軸上運動,但運動的方向不限,我們發(fā)現(xiàn):隨著動點、的運動,線段的中點也隨著運動.問點能否與原點重合?若能,求出從、相遇起經(jīng)過的運動時間,并直接寫出點的運動方向和運動速度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=36°,∠C=72°,∠DBC=36°.

(1)求∠ABD的度數(shù)。

(2)求證:BC=AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,射線CBOA,C=OAB=100°,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF。

(1)求∠EOB的度數(shù);

(2)若平行移動AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個比值;

(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=OBA?若存在,求出其度數(shù);若不存在,說明理由。

查看答案和解析>>

同步練習冊答案