【題目】如圖,有一塊不規(guī)則的四邊形地皮ABCO,各個頂點的坐標分別為A(-2,6),B(-5,4),C(-7,0),O(0,0)(圖上一個單位長度表示10米),現在想對這塊地皮進行規(guī)劃,需要確定它的面積.
(1)求這個四邊形的面積;
(2)如果把四邊形ABCD的各個頂點的縱坐標保持不變,橫坐標加2,所得到的四邊形面積是多少?
【答案】(1) 2500平方米;(2)所得到的四邊形的面積與原四邊形的面積相等,為2500平方米.
【解析】
(1)過點A作AG⊥x軸于點G,過點B作BF⊥x軸于點F,把四邊形ABCO的面積分成兩個三角形的面積與梯形的面積的和,然后列式求解即可;
(2)橫坐標增加2,縱坐標不變,就是把四邊形ABCO向右平移2個單位,根據平移的性質,四邊形的面積不變.
(1)過B作BF⊥x軸于F,過A作AG⊥x軸于G,如圖所示.
∴S四邊形ABCO=S三角形BCF+S梯形ABFG+S三角形AGO
=[]
×102=2500(平方米).
(2)把四邊形ABCO的各個頂點的縱坐標保持不變,橫坐標加2,即將這個四邊形向右平移2個單位長度,
故所得到的四邊形的面積與原四邊形的面積相等,為2500平方米.
科目:初中數學 來源: 題型:
【題目】如圖,完成下列推理,并填寫理由,如圖,∠B=∠D,∠1=∠2,求證:AB∥CD.
【證明】∵∠1=∠2(已知),
∴∥()
∴∠DAB+∠=180°()
∵∠B=∠D(已知)
∴∠DAB+∠=180°()
∴AB∥CD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“半角型”問題探究:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究圖中線段BE,EF,FD之間的數量關系.小明同學的方法是將△ABE繞點A逆時針旋轉120°到△ADG的位置,然后再證明△AFE≌△AFG,從而得出結論:EF=BE+DF
(1)如圖2,在四邊形ABCD中,AB=AD,∠B +∠D=180°,E,F分別是邊BC,CD上的點,且∠EAF=∠BAD,上述結論是否仍然成立,并說明理由.
(2)實際應用:
如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離?
拓展提高
(3)如圖4,邊長為5的正方形ABCD中,點E、F分別在AB、CD上,AE=CF=1,O為EF的中點,動點G、H分別在邊AD、BC上,EF與GH的交點P在O、F之間(與0、F不重合),且∠GPE=45°,設AG=m,求m的取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算題
(1)﹣10﹣(﹣16)+(﹣24);
(2)﹣3.5÷×(﹣)×|﹣|
(3)(﹣+)×(﹣36)
(4)(﹣1)3+[42﹣(l﹣32)×2]
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C的坐標分別為(6,0)、(0,4),點P是線段BC上的動點,當△OPA是等腰三角形時,則P點的坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(閱讀材料)小白同學在研究有理數分類時,認為“所有的無限循環(huán)小數都可以化為分數”,例如,怎樣化成分數?
小白的思路是這樣的:
設=x,則10×=10x即=10x,﹣=10x﹣x,3=9x,x=
(解決問題)請你按照小白的思路解決下列問題:
(1)將化成分數;
(2)將化成分數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知 A=2 x2+3xy﹣2x﹣1,B= x2﹣xy﹣1.
(1)化簡:4A﹣(2B+3A),將結果用含有 x、y 的式子表示;
(2)若式子 4A﹣(2B+3A)的值與字母 x 的取值無關,求 y3+A﹣ B 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖A在數軸上所對應的數為﹣2.
(1)點B在點A右邊距A點4個單位長度,求點B所對應的數;
(2)在(1)的條件下,點A以每秒2個單位長度沿數軸向左運動,點 B 以每秒2個單位長度沿數軸向右運動,當點A運動到﹣6所在的點處時,求A,B兩點間距離.
(3)在(2)的條件下,現A點靜止不動,B點再以每秒2個單位長度沿數軸向左運動時,經過多長時間A,B兩點相距4個單位長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們用“”表示一種新運算符號,觀察下列式子,解決問題:
25=2×2+4=8
34=2×3+3=9
3(﹣1)=2×3﹣2=4
﹣3(﹣5)=2×(﹣3)﹣6=﹣12
……
(1)請你用含a,b的式子表示這個規(guī)律:求ab的值;
(2)求(﹣6)(﹣4)的值;
(3)如果x(﹣3)=3x,求x的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com