分析 根據(jù)題意可得AE與AF的關(guān)系,然后延長(zhǎng)AF交BC的延長(zhǎng)線于點(diǎn)G,然后證明△AEB和△GFB全等,再根據(jù)勾股定理可以求得AE的長(zhǎng),本題得以解決.
解答 解:∵∠EAF=90°,∠EBF=90°,
∴∠AEB+∠AFB=180°,
延長(zhǎng)AF交BC于點(diǎn)G,
∵∠AFB+∠GFB=180°,
∴∠AEB=∠GFB,
∵∠EBA+∠ABF=∠ABF+∠FBG=90°,
∴∠EBA=∠FBG,
又∵EB=FB,
∴△AEB≌△GFB(ASA),
∴AB=BG,F(xiàn)G=AE,
∵AE:AF=1:2,AB=6,
設(shè)AE=x,則AF=2x,F(xiàn)G=x,BG=AB=6,
∴$\sqrt{{6}^{2}+{6}^{2}}=2x+x$,
解得,x=2$\sqrt{2}$,
即AE=2$\sqrt{2}$,
故答案為:2$\sqrt{2}$.
點(diǎn)評(píng) 本題考查矩形的性質(zhì),全等三角形的判定與性質(zhì)、勾股定理、等腰直角三角形,解題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用數(shù)形結(jié)合的思想解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com