【題目】如圖,長方形ABCD中,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊得到△AFE,且點(diǎn)F在長方形ABCD內(nèi).將AF延長交邊BC于點(diǎn)G.若BG=3CG,則 =( 。
A.B.1C.D.
【答案】B
【解析】
根據(jù)中點(diǎn)定義得出DE=CE,再根據(jù)折疊的性質(zhì)得出DE=EF,AF=AD,∠AFE=∠D=90°,從而得出CE=EF,連接EG,利用“HL”證明△ECG≌△EFG,根據(jù)全等三角形性質(zhì)得出CG=FG,設(shè)CG=,則BC=4,根據(jù)長方形性質(zhì)得出AD=BC=4,再求出AF=4,最后求出AG=AF+FG=5,最后利用勾股定理求出AB,從而進(jìn)一步得出答案即可.
如圖,連接EG,
∵點(diǎn)E是CD中點(diǎn),
∴DE=EC,
根據(jù)折疊性質(zhì)可得:AD=AF,DE=EF,∠D=∠AFE=90°,
∴CE=EF,
在Rt△ECG與Rt△EFG中,
∵EG=EG,EC=EF,
∴Rt△ECG≌Rt△EFG(HL),
∴CG=FG,
設(shè)CG=,
∴BG=3CG=3,
∴BC=4,
∴AF=AD=BC=4.
∴AG=5.
在Rt△ABG中,
∴,
∴,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ ABC中,AB = AC
(1)如圖 1,如果∠BAD = 30°,AD是BC上的高,AD =AE,則∠EDC =
(2)如圖 2,如果∠BAD = 40°,AD是BC上的高,AD = AE,則∠EDC =
(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請(qǐng)用式子表示:
(4)如圖 3,如果AD不是BC上的高,AD = AE,是否仍有上述關(guān)系?如有,請(qǐng)你寫出來,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+m與雙曲線y=相交于A,B兩點(diǎn),BC∥x軸,AC∥y軸,則△ABC面積的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE,BE,DE,過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+.其中正確結(jié)論的序號(hào)是( )
A. ①②③ B. ①②④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點(diǎn)E.在△ABC外有一點(diǎn)F,使FA⊥AE,F(xiàn)C⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點(diǎn)M,使BM=2DE,連接MC,交AD于點(diǎn)N,連接ME.求證:①ME⊥BC;②DE=DN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,線段長為,于,于,=,=,為線段上兩動(dòng)點(diǎn),在右側(cè)且=,則由到的路徑:的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,對(duì)角線,交于點(diǎn),為上點(diǎn),且,為上點(diǎn),為上點(diǎn),且,并與相交于點(diǎn).
求證:;
若,,求的長.(結(jié)果用表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市積極開展“陽光體育進(jìn)校園”活動(dòng),各校學(xué)生堅(jiān)持每天鍛煉一小時(shí),某校根據(jù)實(shí)際,決定主要開設(shè)A:乒乓球,B:籃球,C:跑步,D:跳繩四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜歡哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖中信息解答下列問題.
(1)請(qǐng)計(jì)算最喜歡B項(xiàng)目的人數(shù)所占的百分比.
(2)請(qǐng)計(jì)算D項(xiàng)所在扇形圖中的圓心角的度數(shù).
(3)請(qǐng)把統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com