分析 (1)由根據(jù)題意得:MN是AC的垂直平分線,即可得AD=CD,AE=CE,然后由CE∥AB,可證得CD∥AE,繼而證得四邊形ADCE是菱形;
(2)由∠ACB=90°,BC=6,AB=10,可求得AC的長,易得DO是△ABC的中位線,又由四邊形ADCE是菱形,即可求得答案.
解答 (1)證明:∵根據(jù)題意得:MN是AC的垂直平分線,
∴AD=CD,AE=CE,
∴∠CAD=∠ACD,∠CAE=∠ACE,
∵CE∥AB,
∴∠CAD=∠ACE,
∴∠ACD=∠CAE,
∴CD∥AE,
∴四邊形ADCE是平行四邊形,
∴四邊形ADCE是菱形;
(2)解:∵四邊形ADCE是菱形,
∴OA=OC,OD=OE,AC⊥DE,
∵∠ACB=90°,
∴DE∥BC,
∴OD是△ABC的中位線,
∴OD=$\frac{1}{2}$BC=$\frac{1}{2}$×6=3,
∴DE=6,
∵AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=8,
∴四邊形ADCE的面積為:$\frac{1}{2}$AC•DE=24.
點評 此題考查了菱形的判定與性質(zhì)、三角形中位線的性質(zhì)以及勾股定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | abc<0 | B. | 2a+b<0 | C. | a-b+c<0 | D. | 4ac-b2<0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3) | B. | (-3,1) | C. | (1,3) | D. | (-1,-3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com