【題目】如圖,已知A,B分別為數(shù)軸上的兩點(diǎn),點(diǎn)A表示的數(shù)是﹣30,點(diǎn)B表示的數(shù)是50.

(1)請(qǐng)寫出線段AB中點(diǎn)M表示的數(shù)是   

(2)現(xiàn)有一只螞蟻P從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左移動(dòng),同時(shí)另一只螞蟻Q恰好從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右移動(dòng),設(shè)兩只螞蟻在數(shù)軸上的點(diǎn)C相遇.

①求A、B兩點(diǎn)間的距離;

②求兩只螞蟻在數(shù)軸上的點(diǎn)C相遇時(shí)所用的時(shí)間;

③求點(diǎn)C對(duì)應(yīng)的數(shù)是多少?

(3)若螞蟻P從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí)另一只螞蟻恰好從A點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸也向左運(yùn)動(dòng),設(shè)兩只螞蟻在數(shù)軸上的D點(diǎn)相遇,求D點(diǎn)表示的數(shù)是多少?

【答案】(1)10;(2)①80;②16秒;③2;(3)-190.

【解析】

首先計(jì)算出AB長(zhǎng)度,再根據(jù)中點(diǎn)平分線段可得點(diǎn)M表示的數(shù);

A、B間的距離用兩點(diǎn)表示的數(shù)進(jìn)行加減運(yùn)算即可得;

②用路程除以速度即可表示時(shí)間;

③用50減去螞蟻P的爬行路程即可得;

(3)設(shè)兩只螞蟻t秒后相遇,由題意得:定在A點(diǎn)左側(cè)相遇,根據(jù)等量關(guān)系列出方程,然后可計(jì)算出運(yùn)動(dòng)時(shí)間,再根據(jù)A點(diǎn)表示的數(shù),進(jìn)而可得D點(diǎn)對(duì)應(yīng)的數(shù).

解:(1)AB=50+(﹣30)=20

AB中點(diǎn)M表示的數(shù)是10.

故答案為:10

(2)A、B兩點(diǎn)間的距離為:50﹣(﹣30)=80

②兩只螞蟻在數(shù)軸上的點(diǎn)C相遇時(shí)所用的時(shí)間為:80÷(3+2)=16(秒)

③點(diǎn)C對(duì)應(yīng)的數(shù)是:50﹣16×3=2

(3)設(shè)兩只螞蟻t秒后相遇,可得: 2t+80=3t

解得 t=80

D點(diǎn)表示的數(shù)是:-( )-30=﹣190.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明騎自行車去學(xué)校,最初以某一速度勻速行駛,中途自行車發(fā)生故障,停下來修車耽誤了幾分鐘,為了按時(shí)到校,他加快了速度,仍保持勻速行駛,結(jié)果準(zhǔn)時(shí)到校,到校后,小明畫了自行車行進(jìn)路程s(km)與行進(jìn)時(shí)間t(h)的圖象,如圖所示,請(qǐng)回答:

(1)這個(gè)圖象反映了哪兩個(gè)變量之間的關(guān)系?

(2)根據(jù)圖象填表:

時(shí)間t/h

0

0.2

0.3

0.4

路程s/km

(3)路程s可以看成時(shí)間t的函數(shù)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】樂樂是一名健步運(yùn)動(dòng)的愛好者,她用手機(jī)軟件記錄了某個(gè)月(30天)每天健步走的步數(shù)(單位:萬步),并將記錄結(jié)果繪制成了如圖所示的統(tǒng)計(jì)圖(不完整).

(1)若樂樂這個(gè)月平均每天健步走的步數(shù)為1.32萬步,試求她走1.3萬步和1.5萬步的天數(shù);
(2)求這組數(shù)據(jù)中的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)如圖①,四邊形ABCD是正方形,點(diǎn)G是BC上的任意一點(diǎn),BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,探究BF,DE,EF之間的數(shù)量關(guān)系,第一學(xué)習(xí)小組合作探究后,得到DE﹣BF=EF,請(qǐng)證明這個(gè)結(jié)論;
(2)若(1)中的點(diǎn)G在CB的延長(zhǎng)線上,其余條件不變,請(qǐng)?jiān)趫D②中畫出圖形,并直接寫出此時(shí)BF,DE,EF之間的數(shù)量關(guān)系;
(3)如圖③,四邊形ABCD內(nèi)接于⊙O,AB=AD,E,F(xiàn)是AC上的兩點(diǎn),且滿足∠AED=∠BFA=∠BCD,試判斷AC,DE,BF之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在OA,OC上

(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請(qǐng)你從中選取兩個(gè)條件證明△BEO≌△DFO;

(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二廣高速在益陽(yáng)境內(nèi)的建設(shè)正在緊張地進(jìn)行,現(xiàn)有大量的沙石需要運(yùn)輸.益安車隊(duì)有載重量為8噸、10噸的卡車共12輛,全部車輛運(yùn)輸一次能運(yùn)輸110噸沙石.

1)求益安車隊(duì)載重量為8噸、10噸的卡車各有多少輛?

2)隨著工程的進(jìn)展,益安車隊(duì)需要一次運(yùn)輸沙石165噸以上,為了完成任務(wù),準(zhǔn)備新增購(gòu)這兩種卡車共6輛,車隊(duì)有多少種購(gòu)買方案,請(qǐng)你一一寫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠BOC=70°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)

(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=   °;

(2)如圖②,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠BOE,求∠COD的度數(shù);

(3)如圖③,將直角三角板DOE繞點(diǎn)O轉(zhuǎn)動(dòng),如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩車間共120人,其中甲車間人數(shù)比乙車間人數(shù)的4倍少5.

1求甲、乙兩車間各有多少人?

2若從甲、乙兩車間分別抽調(diào)工人,組成丙車間研制新產(chǎn)品,并使甲、乙、丙三個(gè)車間的人數(shù)比為1347,那么甲、乙兩車間要分別抽調(diào)多少工人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在棋盤中建立如圖的直角坐標(biāo)系,三顆棋子A,O,B的位置如圖,它們分別是(-1,1),(0,0)和(1,0).

(1)如圖2,添加棋子C,使A,O,B,C四顆棋子成為一個(gè)軸對(duì)稱圖形,請(qǐng)?jiān)趫D中畫出該圖形的對(duì)稱軸;

(2)在其他格點(diǎn)位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個(gè)軸對(duì)稱圖形,請(qǐng)直接寫出棋子P的位置的坐標(biāo).(寫出2個(gè)即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案