【題目】若正方形ABCD的邊長(zhǎng)為4,E為BC邊上一點(diǎn),BE=3,M為線(xiàn)段AE上一點(diǎn),射線(xiàn)BM交正方形的一邊于點(diǎn)F,且BF=AE,則BM的長(zhǎng)為 .
【答案】 或
【解析】解:如圖,
當(dāng)BF如圖位置時(shí),
∵AB=AB,∠BAF=∠ABE=90°,AE=BF,
∴△ABE≌△BAF(HL),
∴∠ABM=∠BAM,
∴AM=BM,AF=BE=3,
∵AB=4,BE=3,
∴AE= = =5,
過(guò)點(diǎn)M作MS⊥AB,由等腰三角形的性質(zhì)知,點(diǎn)S是AB的中點(diǎn),BS=2,SM是△ABE的中位線(xiàn),
∴BM= AE= ×5= ,
當(dāng)BF為BG位置時(shí),易得Rt△BCG≌Rt△ABE,
∴BG=AE=5,∠AEB=∠BGC,
∴△BHE∽△BCG,
∴BH:BC=BE:BG,
∴BH= .
所以答案是: 或 .
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等腰直角三角形(等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°),還要掌握三角形中位線(xiàn)定理(連接三角形兩邊中點(diǎn)的線(xiàn)段叫做三角形的中位線(xiàn);三角形中位線(xiàn)定理:三角形的中位線(xiàn)平行于三角形的第三邊,且等于第三邊的一半)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,.B 的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;
(2) 在y軸上是否存在一點(diǎn)P,連接PA,PB,使S三角形PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量狀況已引起全社會(huì)的廣泛關(guān)注,某市統(tǒng)計(jì)了去年每月空氣質(zhì)量達(dá)到良好以上的天數(shù),整理后制成如圖所示的折線(xiàn)統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.根據(jù)以上信息解答下列問(wèn)題:該市去年空氣質(zhì)量連續(xù)提升的月份范圍是____;扇形統(tǒng)計(jì)圖中扇形A的圓心角的度數(shù)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中C點(diǎn)坐標(biāo)為(1,2).
(1)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,畫(huà)出△A′B′C′則三個(gè)頂點(diǎn)坐標(biāo)分別是:A′( , ),B′( , ),C′( , ).
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為17cm,弦AB∥CD,AB=30cm,CD=16cm,圓心O位于AB,CD的上方,求AB和CD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知是外一點(diǎn),連接,求的度數(shù).
解:(1)如圖1,過(guò)點(diǎn)作,所以依據(jù),(依據(jù)①_____).又因?yàn)?/span>(依據(jù)②_____),所以.
填空:①是_______;②是______.
(2)如圖2,,求的度數(shù).
(3)如圖3,,點(diǎn)在點(diǎn)的右側(cè),;點(diǎn)在點(diǎn)的左側(cè),.平分,平分,所在的直線(xiàn)交于點(diǎn),點(diǎn)在與兩條平行線(xiàn)之間,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是高,BE平分∠ABC.
(1)若∠EBC=32°,∠1∶∠2=1∶2,EF∥AD,求∠FEC的度數(shù).
(2)若∠2=50°,點(diǎn)F為射線(xiàn)CB上的一個(gè)動(dòng)點(diǎn),當(dāng)△EFC為鈍角三角形時(shí),直接寫(xiě)出∠FEC的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若干人乘坐若干輛汽車(chē),如果每輛汽車(chē)坐22人,有1人不能上車(chē);如果有一輛車(chē)不坐人,那么所有旅客正好能平分乘到其他各車(chē)上,則旅客共________人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com