如圖,已知AB為半圓O的直徑,以AO、OB為直徑在半圓內(nèi)作半圓⊙O1、⊙O2,⊙O3與⊙O內(nèi)切,與⊙O1、⊙O2外切.若⊙O的半徑為2R,試求⊙O3的半徑r

 

答案:
解析:

O3的半徑為

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是半圓O的直徑,AP為過點A的半圓的切線.在
AB
上任取一點C(點C與A、B不重合),過點C作半圓的切線CD交AP于點D;過點C作CE⊥AB,垂足為E.連接BD,交CE于點F.
(1)當(dāng)點C為
AB
的中點時(如圖1),求證:CF=EF;
(2)當(dāng)點C不是
AB
的中點時(如圖2),試判斷CF與EF的精英家教網(wǎng)相等關(guān)系是否保持不變,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•葫蘆島一模)如圖,已知AB是半圓O的直徑,AB=10,點P是半圓周上一點,連接AP、BP,并延長BP至點C,使CP=BP,過點C作CE⊥AB,點E為垂足,CE交AP于點F,連接OF.
(1)當(dāng)∠BAP=30°時,求
BP
的長度;
(2)當(dāng)CE=8時,求線段EF的長;
(3)在點P運動過程中,點E隨之運動到點A、O之間時,以點E、O、F為頂點的三角形與△BAP相似,請求出此時AE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB為⊙O的直徑,點C為半圓上的三等分點,在直徑AB所在的直線上找一點P,連接CP交⊙O于點Q,使PQ=OQ,則∠CPO=
20°或40°或100°
20°或40°或100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《第24章 圓(下)》2010年整章水平測試(一)(解析版) 題型:解答題

如圖,已知AB是半圓O的直徑,AP為過點A的半圓的切線.在上任取一點C(點C與A、B不重合),過點C作半圓的切線CD交AP于點D;過點C作CE⊥AB,垂足為E.連接BD,交CE于點F.
(1)當(dāng)點C為的中點時(如圖1),求證:CF=EF;
(2)當(dāng)點C不是的中點時(如圖2),試判斷CF與EF的相等關(guān)系是否保持不變,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案