【題目】如圖,AB、CD分別與半圓OO切于點(diǎn)A,D,BC⊙O于點(diǎn)E.若AB=4,CD=9,則⊙O的半徑為(  )

A. 12 B. C. 6 D. 5

【答案】C

【解析】

BCD的垂線,設(shè)垂足為F;由切線長(zhǎng)定理知:BA=BE,CE=CD;即BC=AB+CD;在構(gòu)建的RtBFC中,BC=AB+CD,CF=CD-AB,根據(jù)勾股定理即可求出BF即圓的直徑,進(jìn)而可求出⊙O的半徑

BBFCDF,

AB、CD與半圓O切于A、D,

∴∠BAD=CDA=BFD=90°,

∴四邊形ADFB為矩形,

AB=DF,BF=AD,

AB=BE=4,CD=CE=9;

BC=BE+CE=13;

AB、CD與半圓O相切,

∴四邊形ADFB為矩形;

CF=CD-FD=9-4=5,

RtBFC中,BF===12,

AD=BF=12,

∴⊙O的半徑為6.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,.將向上翻折,使點(diǎn)落在上,記為點(diǎn),折痕為,再將為對(duì)稱軸翻折至,連接

1)證明:

2)猜想四邊形的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(每小題4分,共16分)

1

2)已知.求代數(shù)式的值.

3)先化簡(jiǎn),再求值,其中.

4)解分式方程:+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc>0;b<a+c;4a+2b+c>0;2c<3b;b2>4ac;其中正確的結(jié)論有______.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過AC兩點(diǎn),且與x軸交于另一點(diǎn)B點(diǎn)B在點(diǎn)A右側(cè)

1求拋物線的解析式及點(diǎn)B坐標(biāo);

2若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長(zhǎng)的最大值;

3試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB=90°,OA=3,OB=2,將RtAOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得RtFOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長(zhǎng)為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,CAB延長(zhǎng)線上一點(diǎn),CD⊙O相切于點(diǎn)E,AD⊥CD于點(diǎn)D

1)求證:AE平分∠DAC

2)若AB=4,∠ABE=60°

AD的長(zhǎng);

求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為創(chuàng)建全國(guó)文明城市,開展“美化綠化城市”活動(dòng),計(jì)劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬(wàn)平方米.自2013年初開始實(shí)施后,實(shí)際每年綠化面積是原計(jì)劃的1.6倍,這樣可提前4年完成任務(wù).

(1)問實(shí)際每年綠化面積多少萬(wàn)平方米?

(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實(shí)際平均每年綠化面積至少還要增加多少萬(wàn)平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校名學(xué)生參加植樹活動(dòng),要求每人植棵,活動(dòng)結(jié)束后隨機(jī)抽查了名學(xué)生每人的植樹量,并分為四種類型,棵;;棵;棵,棵。將各類的人繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯(cuò)誤。

回答下列問題:

1)寫出條形圖中存在的錯(cuò)誤,并說明理由.

2)寫出這名學(xué)生每人植樹量的眾數(shù)、中位數(shù).

3)在求這名學(xué)生每人植樹量的平均數(shù).

4)估計(jì)這名學(xué)生共植樹多少棵.

查看答案和解析>>

同步練習(xí)冊(cè)答案