(2010•陜西)如圖,A、B、C三點(diǎn)在同一條直線上,AB=2BC,分別以AB,BC為邊做正方形ABEF和正方形BCMN連接FN,EC.
求證:FN=EC.

【答案】分析:只要判定△FNE≌△EBC,就不難證明FN=EC.
解答:證明:在正方形ABEF中和正方形BCMN中,
AB=BE=EF,BC=BN,∠FEN=∠EBC=90°,
∵AB=2BC,即BC=BN=AB,
∴BN=BE,即N為BE的中點(diǎn),
∴EN=NB=BC,
∴△FNE≌△EBC,
∴FN=EC.
點(diǎn)評:本題集中考查了正方形的性質(zhì)和全等三角形的判定.
(1)正方形的四條邊相等,四個(gè)角相等,都是90°,對角線互相垂直、平分;
(2)三角形全等的判定定理有SAS、SSS、AAS,ASA,HL等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•陜西)如圖,在平面直角坐標(biāo)系中,拋物線A(-1,0),B(3,0),C(0,-1)三點(diǎn).
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)Q在y軸上,點(diǎn)P在拋物線上,要使Q、P、A、B為頂點(diǎn)的四邊形是平行四邊形,求所有滿足條件點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年陜西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•陜西)如圖,在平面直角坐標(biāo)系中,拋物線A(-1,0),B(3,0),C(0,-1)三點(diǎn).
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)Q在y軸上,點(diǎn)P在拋物線上,要使Q、P、A、B為頂點(diǎn)的四邊形是平行四邊形,求所有滿足條件點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年陜西省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•陜西)如圖是一條水鋪設(shè)的直徑為2米的通水管道橫截面,其水面寬1.6米,則這條管道中此時(shí)最深為    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年陜西省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•陜西)如圖,在△ABC中,D是AB邊上一點(diǎn),連接CD,要使△ADC與△ABC相似,應(yīng)添加的條件是   

查看答案和解析>>

同步練習(xí)冊答案