【題目】如圖,⊙O的半徑是5,點(diǎn)A在⊙O上.P是⊙O所在平面內(nèi)一點(diǎn),且AP=2,過點(diǎn)P作直線l,使l⊥PA.
(1)點(diǎn)O到直線l距離的最大值為_____;
(2)若M,N是直線l與⊙O的公共點(diǎn),則當(dāng)線段MN的長度最大時(shí),OP的長為_____.
【答案】7
【解析】
(1)如圖1,當(dāng)點(diǎn)P在圓外且O,A,P三點(diǎn)共線時(shí),點(diǎn)O到直線l距離的最大,于是得到結(jié)論;
(2)如圖2,根據(jù)已知條件得到線段MN是⊙O的直徑,根據(jù)勾股定理即可得到結(jié)論.
(1)如圖1,∵l⊥PA,
∴當(dāng)點(diǎn)P在圓外且O,A,P三點(diǎn)共線時(shí),點(diǎn)O到直線l距離的最大,
最大值為AO+AP=5+2=7;
(2)如圖2,∵M,N是直線l與⊙O的公共點(diǎn),當(dāng)線段MN的長度最大時(shí),
線段MN是⊙O的直徑,
∵l⊥PA,
∴∠APO=90°,
∵AP=2,OA=5,
∴OP==,
故答案為:7,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC中,AB=4cm,以C為圓心,1cm長為半徑畫⊙C,點(diǎn)P在⊙C上運(yùn)動,連接AP,并將AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°至AP′,點(diǎn)D是邊AC的中點(diǎn),連接DP′.在點(diǎn)P移動的過程中,線段DP′長度的最小值為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E在BC的延長線上,且CE=BC,AE=AB,AE、DC相交于點(diǎn)O,連接DE.若∠AOD=120°,AC=4,則CD的大小為( )
A.8B.4C.8D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知k是常數(shù),拋物線y=x2+(k2+k-6)x+3k的對稱軸是y軸,并且與x軸有兩個(gè)交點(diǎn).
(1)求k的值:
(2)若點(diǎn)P在拋物線y=x2+(k2+k-6)x+3k上,且P到y軸的距離是2,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB=DC,AD=3cm,BC=7cm,∠B=60°,P為BC邊上一點(diǎn)(不與B,C重合),連接AP,過P點(diǎn)作PE交DC于E,使得∠APE=∠B.
(1)求證:△ABP∽△PCE;
(2)求AB的長;
(3)在邊BC上是否存在一點(diǎn)P,使得DE:EC=5:3?如果存在,求BP的長;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動點(diǎn).
(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1:y=a1(x+1)2+1與y2:y=a2(x﹣4)2﹣3交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.下列結(jié)論,正確的是( 。
A.>B.當(dāng)=時(shí),x=1
C.當(dāng)>時(shí),0≤x<1D.3AB=2AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料:思考的同學(xué)小斌在解決連比等式問題:“已知正數(shù),,滿足,求的值”時(shí),采用了引入?yún)?shù)法,將連比等式轉(zhuǎn)化為了三個(gè)等式,再利用等式的基本性質(zhì)求出參數(shù)的值.進(jìn)而得出,,之間的關(guān)系,從而解決問題.過程如下:
解;設(shè),則有:
,,,
將以上三個(gè)等式相加,得.
,,都為正數(shù),
,即,.
.
仔細(xì)閱讀上述材料,解決下面的問題:
(1)若正數(shù),,滿足,求的值;
(2)已知,,,互不相等,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級數(shù)學(xué)興趣小組為了測得該校地下停車場的限高CD,在課外活動時(shí)間測得下列數(shù)據(jù):如圖,從地面E點(diǎn)測得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(diǎn)(與E點(diǎn)在同一個(gè)水平線)距停車場頂部C點(diǎn)(A、C、B在同一條直線上且與水平線垂直)1.2米.
(1)試求該校地下停車場的高度AC;
(2)求CD的高度,一輛高為6米的車能否通過該地下停車場(=1.73,結(jié)果精確到0.1米).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com