(2001•烏魯木齊)如果四邊形的兩條對角線的長的和為10,那么順次連接這個四邊形各邊中點所得的四邊形的周長為   
【答案】分析:根據(jù)三角形的中位線定理易得新四邊形各邊等于原四邊形中對應(yīng)對角線的一半,那么新四邊形的周長就等于原四邊形對角線的和.
解答:解:根據(jù)三角形的中位線定理,得到它的每條邊長都是與它平行的對角線長度的一半,
所以新四邊形的周長等于原四邊形的對角線的和,即為10.
故答案為10.
點評:本題考查三角形的中位線等于第三邊的一半的性質(zhì),三角形中位線性質(zhì)應(yīng)用比較廣泛,尤其是在三角形、四邊形方面起著非常重要作用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2001•烏魯木齊)如圖,直線AB過點A(m,0)、B(0,n)(m>0,n>0),反比例函數(shù)的圖象與直線AB交于C、D兩點,P為雙曲線上任意一點,過P點作PQ⊥x軸于Q,PR⊥y軸于R.
(1)用含m、n的代數(shù)式表示△AOB的面積S;
(2)若m+n=10,n為何值時S最大并求出這個最大值;
(3)若BD=DC=CA,求出C、D兩點的坐標(biāo);
(4)在(3)的條件,過O、D、C點作拋物線,當(dāng)該拋物線的對稱軸為x=1時,矩形PROQ的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年新疆烏魯木齊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•烏魯木齊)如圖,直線AB過點A(m,0)、B(0,n)(m>0,n>0),反比例函數(shù)的圖象與直線AB交于C、D兩點,P為雙曲線上任意一點,過P點作PQ⊥x軸于Q,PR⊥y軸于R.
(1)用含m、n的代數(shù)式表示△AOB的面積S;
(2)若m+n=10,n為何值時S最大并求出這個最大值;
(3)若BD=DC=CA,求出C、D兩點的坐標(biāo);
(4)在(3)的條件,過O、D、C點作拋物線,當(dāng)該拋物線的對稱軸為x=1時,矩形PROQ的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圓》(06)(解析版) 題型:解答題

(2001•烏魯木齊)已知:如圖△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于D,過D作⊙O的切線交BC于點E,EF⊥AB,垂足為F.
(1)求證:DE=BC;
(2)若AC=6,BC=8,求S△ACD:S△EDF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圓》(03)(解析版) 題型:填空題

(2001•烏魯木齊)如圖,⊙O的兩條弦AB、CD相交于E,如果AE=2,EB=6,CE=3,那么CD=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圓》(03)(解析版) 題型:填空題

(2001•烏魯木齊)已知:AB是⊙O的直徑,弦CD與AB相交于E,若使弧CB=弧BD,則還需要添加什么條件    .(填出一個即可)

查看答案和解析>>

同步練習(xí)冊答案