【題目】ABCD中,對角線AC、BD相交于O,EF過點O,連接AF、CE

1)求證:△BFO≌△DEO;

2)若AFBC,試判斷四邊形AFCE的形狀,并加以證明;

3)若在(2)的條件下再添加EF平分∠AEC,試判斷四邊形AFCE的形狀,無需說明理由.

【答案】1)詳見解析;

2)四邊形AFCE是矩形,證明見解析;

3)四邊形AFCE是正方形.

【解析】

1)由平行四邊形的性質(zhì)得出OBOD,OAOC,ADBC,得出∠OBF=∠ODE,由ASA證明BFO≌△DEO即可;

2)由全等三角形的性質(zhì)得出BFDE,證出四邊形AFCE是平行四邊形,再證出∠AFC90°,即可得出四邊形AFCE是矩形.

3)由EF平分∠AEC知∠AEF=∠CEF,再由ADBC知∠AEF=∠CFE,從而得∠CEF=∠CFE,繼而知CECF,據(jù)此可得答案.

解:(1)∵四邊形ABCD是平行四邊形,

OBOD,ADBC,ADBC,

∴∠OBF=∠ODE,

在△BFO和△DEO中,

,

∴△BFO≌△DEOASA);

2)四邊形AFCE是矩形;理由如下:

∵△BFO≌△DEO

BFDE,

CFAE,

ADBC,

∴四邊形AFCE是平行四邊形;

又∵AFBC,

∴∠AFC90°,

∴四邊形AFCE是矩形;

3)∵EF平分∠AEC

∴∠AEF=∠CEF,

ADBC,

∴∠AEF=∠CFE,

∴∠CEF=∠CFE,

CECF

∴四邊形AFCE是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運動商城的自行車銷售量自2017年起逐月增加,據(jù)統(tǒng)計,該商城1月份銷售自行車64輛,3月份銷售了100輛.

(1)若該商城前4個月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?

(2)考慮到自行車需求不斷增加,該商城準備投入3萬元再購進一批兩種規(guī)格的自行車,已知A型車的進價為500元/輛,售價為700元/輛,B型車進價為1000元/輛,售價為1300元/輛.根據(jù)銷售經(jīng)驗,A型車不少于B型車的2倍,但不超過B型車的2.8倍.假設(shè)所進車輛全部售完,為使利潤最大,該商城應(yīng)如何進貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A+2B=B=.

1)求A;

2)若計算A的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年浙江義烏12分)如圖1,已知x)圖象上一點P,PAx軸于點A(a,0),點B坐標為(0,b)(b>0),動點M是y軸正半軸上B點上方的點,動點N在射線AP上,過點B作AB的垂線,交射線AP于點D,交直線MN于點Q,連結(jié)AQ,取AQ的中點為C.

(1)如圖2,連結(jié)BP,求PAB的面積;

(2)當(dāng)點Q在線段BD上時,若四邊形BQNC是菱形,面積為,求此時P點的坐標;

(3)當(dāng)點Q在射線BD上時,且a=3,b=1,若以點B,C,N,Q為頂點的四邊形是平行四邊形,求這個平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富老年人的晚年生活,甲、乙兩單位準備組織退休職工到某風(fēng)景區(qū)游玩.甲、乙兩單位退休職工共人,其中乙單位人數(shù)少于人,且甲單位人數(shù)不夠.經(jīng)了解,該風(fēng)景區(qū)的門票價格如下表:

數(shù)量()

張及以上

單價(/)

如果兩單位分別單獨購買門票,一共應(yīng)付.

1)甲、乙兩單位各有多少名退休職工準備參加游玩?

2)如果甲單位有名退休職工因身體原因不能外出游玩,那么你有幾種購買方案,通過比較,你該如何購買門票才能最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩組卡片共5張,A組的三張分別寫有數(shù)字24,6,B組的兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別,

1隨機從A組抽取一張,求抽到數(shù)字為2的概率;

2隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場第一次用11000元購進某款拼裝機器人進行銷售,很快銷售一空,商家又用24000元第二次購進同款機器人,所購進數(shù)量是第一次的2倍,但單價貴了10元.

(1)求該商家第一次購進機器人多少個?

(2)若所有機器人都按相同的標價銷售,要求全部銷售完畢的利潤率不低于20%(不考慮其它因素),那么每個機器人的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bxA(﹣4,0),B(﹣1,3)兩點,點C、B關(guān)于拋物線的對稱軸對稱,過點B作直線BHx軸,交x軸于點H.

(1)求拋物線的函數(shù)表達式;

(2)寫出點C的坐標,并求出△ABC的面積;

(3)點P是拋物線上一動點,且位于x軸的下方,當(dāng)△ABP的面積為15時,求出點P的坐標;

(4)若點M在直線BH上運動,點Nx軸上運動,當(dāng)以點C、M、N為頂點的三角形為等腰直角三角形時,請直接寫出此時點N的坐標.

    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國西南五省市的部分地區(qū)發(fā)生嚴重旱災(zāi)為鼓勵節(jié)約用水,某市自來水公司采取分段收費標準右圖反映的是每月收取水費y與用水量x之間的函數(shù)關(guān)系

1)小明家五月份用水8,應(yīng)交水費______ ;

2)按上述分段收費標準,小明家三、四月份分別交水費26元和18,問四月份比三月份節(jié)約用水多少噸?

查看答案和解析>>

同步練習(xí)冊答案