【題目】如圖,,,.
用直尺和圓規(guī)作的平分線,交于,并在上取一點,使,再連接,交于;(要求保留作圖痕跡,不必寫出作法)
依據(jù)現(xiàn)有條件,直接寫出圖中所有相似的三角形,并求出.(圖中不再增加字母和線段,不要求證明).
【答案】(1)詳見解析;(2);;.
【解析】
(1)首先作∠C的平分線CE:以點C為圓心,以任意長為半徑畫弧;再以此弧與∠C兩邊的交點為圓心,以大于這兩個交點連線的一半為半徑畫弧,過此兩弧的交點作射線CE即可;以點A為圓心,以AC的長為半徑畫弧,弧與CD的交點即為點F;(2)根據(jù)平行于三角形的一邊的直線截三角形的另兩邊或另兩邊的延長線所得三角形與原三角形相似,可得△EAK∽△CFK;由平行線的內(nèi)錯角相等、角平分線材的定義可得△ACE是等腰三角形,可得∠AFC=∠ACF=72°,易得∠ACK=∠AEC=∠CAF=36°,即可得△CKF∽△ACF∽△EAK,△CAK∽△CEA 根據(jù)△CKF∽△ACF即可求出AK的長.
(1)作法正確得,點作法正確,點標(biāo)注正確;
(2);
理由:∵,,
∴,
∴,
∵,
∴,
∵,
∴,
∴,,
∴,.
∵,
∴,
∵,
∴,
解得:,(不可能是負(fù)數(shù)),
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某居民小區(qū)要在一塊一邊靠墻(墻長)的空地上修建一個矩形花園,花園的一邊靠墻,另三邊用總長為的柵欄圍成.若設(shè)花園的寬為,花園的面積為.
求與之間的函數(shù)關(guān)系________,并寫出自變量的取值范圍是________;
根據(jù)中求得的函數(shù)關(guān)系式,描述其圖象的變化趨勢;并結(jié)合題意判斷當(dāng)取何值時,花園的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李大媽加盟了“紅紅”全國燒烤連鎖店,該公司的宗旨是“薄利多銷”,經(jīng)市場調(diào)查發(fā)現(xiàn),當(dāng)羊肉串的單價定為元時,每天能賣出串,在此基礎(chǔ)上,每加價元李大媽每天就會少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價為元,若李大媽每天銷售這種羊肉串想獲得利潤是元,那么請問這種羊肉串應(yīng)怎樣定價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容:我們已經(jīng)學(xué)習(xí)了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):當(dāng),時,∵,∴,當(dāng)且僅當(dāng)時取等號.請利用上述結(jié)論解決以下問題:
(1)當(dāng)時,的最小值為_______;當(dāng)時,的最大值為__________.
(2)當(dāng)時,求的最小值.
(3)如圖,四邊形ABCD的對角線AC ,BD相交于點O,△AOB、△COD的面積分別為4和9,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3過點A(5,m)且與y軸交于點B,把點A向左平移2個單位,再向上平移4個單位,得到點C.過點C且與y=2x平行的直線交y軸于點D.
(1)求直線CD的解析式;
(2)直線AB與CD交于點E,將直線CD沿EB方向平移,平移到經(jīng)過點B的位置結(jié)束,求直線CD在平移過程中與x軸交點的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察與思考:閱讀下列材料,并解決后面的問題
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.
即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.
根據(jù)上述材料,完成下列各題.
(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A= ;AC= ;
(2)自從去年日本政府自主自導(dǎo)“釣魚島國有化”鬧劇以來,我國政府靈活應(yīng)對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達(dá)B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,≈2.449)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com