【題目】已知:關(guān)于x的一元二次方程x2—(m—1)x+m+2=0
(1)若方程有兩個(gè)相等的實(shí)數(shù)根,求m的值;
(2)若Rt△ABC中,∠C=90°,tanA的值恰為(1)中方程的根,求cosB的值.
【答案】(1)7或-1;(2)
【解析】
試題分析:(1)利用方程根的判別式,得到關(guān)于m的一元二次方程,然后解方程即可;(2)求出(1)中方程的根,利用三角函數(shù)的性質(zhì)可確定tanA的值,設(shè)未知數(shù),利用勾股定理表示出各邊長(zhǎng),然后根據(jù)余弦的定義求解即可.
試題解析:(1)∵方程有兩個(gè)相等的實(shí)數(shù)根,∴(m-1)2-4(m+2)=0,∴m2-2m+1-4m-8=0,m2-6m-7=0,
∴m=7或-1;
(2)當(dāng)m=7時(shí),方程為x2—6x+9=0,解得x=3,當(dāng)m=-1時(shí),方程為x2+2x+1=0,解得x=-1,因?yàn)閠anA>0,所以tanA=3,又,設(shè)AC=x,則BC=3x,AB=,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:線段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙兩同學(xué)的作業(yè):
甲:(1)以點(diǎn)C為圓心,AB長(zhǎng)為半徑畫(huà);
(2)以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫(huà);
(3)兩弧在BC上方交于點(diǎn)D,連接AD,CD,四邊形ABCD即為所求(如圖1)
乙:(1)連接AC,作線段AC的垂直平分線,交AC于點(diǎn)M;
(2)連接BM并延長(zhǎng),在延長(zhǎng)線上取一點(diǎn)D,使MD=MB,連接AD,CD,四邊形ABCD即為所求(如圖2).
對(duì)于兩人的作業(yè),下列說(shuō)法正確的是( 。
A. 兩人都對(duì) B. 兩人都不對(duì) C. 甲對(duì),乙不對(duì) D. 甲不對(duì),乙對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成兩個(gè)三角形,如果這兩個(gè)三角形相似但不全等,我們就把這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線,在四邊形ABCD中,對(duì)角線BD是它的相似對(duì)角線,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系內(nèi),直線分別與軸、軸相交于點(diǎn)和點(diǎn),直線為過(guò)點(diǎn)的旋轉(zhuǎn)直線,交線段于點(diǎn),直線與軸的正半軸的夾角為.
(1)當(dāng)直線旋轉(zhuǎn)到與線段垂直時(shí),求的值;
(2)當(dāng)直線旋轉(zhuǎn)到過(guò)線段中點(diǎn)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt△ABC和Rt△ACD中,AC=BC,∠ACB=90°,∠ADC=90°,CD=2,(點(diǎn)A、B分別在直線CD的左右兩側(cè)),射線CD交邊AB于點(diǎn)E,點(diǎn)G是Rt△ABC的重心,射線CG交邊AB于點(diǎn)F,AD=x,CE=y.
(1)求證:∠DAB=∠DCF.
(2)當(dāng)點(diǎn)E在邊CD上時(shí),求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.
(3)如果△CDG是以CG為腰的等腰三角形,試求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB =1,D是AB的中點(diǎn),∠ACD = 90°,∠DCB = 45°,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”假期,黔西南州某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購(gòu)買(mǎi)了前往各地的車(chē)票,如圖所示是用來(lái)制作完整的車(chē)票種類和相應(yīng)數(shù)量的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)若去丁地的車(chē)票占全部車(chē)票的10%,請(qǐng)求出去丁地的車(chē)票數(shù)量,并補(bǔ)全統(tǒng)計(jì)圖(如圖所示).
(2)若公司采用隨機(jī)抽取的方式發(fā)車(chē)票,小胡先從所有的車(chē)票中隨機(jī)抽取一張(所有車(chē)票的形狀、大小、質(zhì)地完全相同、均勻),那么員工小胡抽到去甲地的車(chē)票的概率是多少?
(3)若有一張車(chē)票,小王和小李都想去,決定采取摸球的方式確定,具體規(guī)則:“每人從不透明袋子中摸出分別標(biāo)有1、2、3、4的四個(gè)球中摸出一球(球除數(shù)字不同外完全相同),并放回讓另一人摸,若小王摸得的數(shù)字比小李的小,車(chē)票給小王,否則給小李.”試用列表法或畫(huà)樹(shù)狀圖的方法分析這個(gè)規(guī)則對(duì)雙方是否公平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定關(guān)于x的二次函數(shù)y=kx2﹣4kx+3(k≠0),
(1)當(dāng)該二次函數(shù)與x軸只有一個(gè)公共點(diǎn)時(shí),求k的值;
(2)當(dāng)該二次函數(shù)與x軸有2個(gè)公共點(diǎn)時(shí),設(shè)這兩個(gè)公共點(diǎn)為A、B,已知AB=2,求k的值;
(3)由于k的變化,該二次函數(shù)的圖象性質(zhì)也隨之變化,但也有不會(huì)變化的性質(zhì),某數(shù)學(xué)學(xué)習(xí)小組在探究時(shí)得出以下結(jié)論:
①與y軸的交點(diǎn)不變;②對(duì)稱軸不變;③一定經(jīng)過(guò)兩個(gè)定點(diǎn);
請(qǐng)判斷以上結(jié)論是否正確,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+4與坐標(biāo)軸分別交于點(diǎn)A、B,與直線y=x交于點(diǎn)C.在線段OA上,動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).分別過(guò)點(diǎn)P、Q作x軸的垂線,交直線AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動(dòng)時(shí)間為t秒,在運(yùn)動(dòng)過(guò)程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外).
(1)求點(diǎn)P運(yùn)動(dòng)的速度是多少?
(2)當(dāng)t為多少秒時(shí),矩形PEFQ為正方形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com