【題目】給定關(guān)于x的二次函數(shù)ykx24kx+3k0),

1)當(dāng)該二次函數(shù)與x軸只有一個(gè)公共點(diǎn)時(shí),求k的值;

2)當(dāng)該二次函數(shù)與x軸有2個(gè)公共點(diǎn)時(shí),設(shè)這兩個(gè)公共點(diǎn)為AB,已知AB2,求k的值;

3)由于k的變化,該二次函數(shù)的圖象性質(zhì)也隨之變化,但也有不會(huì)變化的性質(zhì),某數(shù)學(xué)學(xué)習(xí)小組在探究時(shí)得出以下結(jié)論:

y軸的交點(diǎn)不變;對(duì)稱(chēng)軸不變;一定經(jīng)過(guò)兩個(gè)定點(diǎn);

請(qǐng)判斷以上結(jié)論是否正確,并說(shuō)明理由.

【答案】(1)(2)1(3)①②③

【解析】

1)由拋物線(xiàn)與x軸只有一個(gè)交點(diǎn),可知=0;

2)由拋物線(xiàn)與x軸有兩個(gè)交點(diǎn)且AB=2,可知A、B坐標(biāo),代入解析式,可得k值;

3)通過(guò)解析式求出對(duì)稱(chēng)軸,與y軸交點(diǎn),并根據(jù)系數(shù)的關(guān)系得出判斷.

1)∵二次函數(shù)ykx24kx+3x軸只有一個(gè)公共點(diǎn),

∴關(guān)于x的方程kx24kx+30有兩個(gè)相等的實(shí)數(shù)根,

∴△=(﹣4k24×3k16k212k0,

解得:k10,k2,

k≠0,

k

2)∵AB2,拋物線(xiàn)對(duì)稱(chēng)軸為x2,

AB點(diǎn)坐標(biāo)為(1,0),(3,0),

將(1,0)代入解析式,可得k1

3)①∵當(dāng)x0時(shí),y3

∴二次函數(shù)圖象與y軸的交點(diǎn)為(0,3),①正確;

②∵拋物線(xiàn)的對(duì)稱(chēng)軸為x2,

∴拋物線(xiàn)的對(duì)稱(chēng)軸不變,②正確;

③二次函數(shù)ykx24kx+3kx24x+3,將其看成y關(guān)于k的一次函數(shù),

k的系數(shù)為0,即x24x0

解得:x10,x24,

∴拋物線(xiàn)一定經(jīng)過(guò)兩個(gè)定點(diǎn)(03)和(4,3),③正確.

綜上可知:正確的結(jié)論有①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以AB為直徑作O,過(guò)點(diǎn)AO的切線(xiàn)AC,連結(jié)BC,交O于點(diǎn)D,點(diǎn)EBC邊的中點(diǎn),連結(jié)AE

(1)求證:∠AEB=2∠C;

(2)若AB=6,,求DE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC是等腰三角形,O是底邊BC中點(diǎn),腰AB與⊙O相切于點(diǎn)D

(1)求證:AC是⊙O的切線(xiàn);

(2)如圖2,連接CD,若tanBCD,⊙O的半徑為,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了掌握我區(qū)中考模擬數(shù)學(xué)試題的命題質(zhì)量與難度系數(shù),命題教師選取一個(gè)水平相當(dāng)?shù)某跞昙?jí)進(jìn)行調(diào)研,將隨機(jī)抽取的部分學(xué)生成績(jī)(得分為整數(shù),滿(mǎn)分為130)分為5組:第一組5570;第二組7085;第三組85100;第四組100115;第五組115130,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問(wèn)題:

(1)本次調(diào)查共隨機(jī)抽取了__ _名學(xué)生;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)將得分轉(zhuǎn)化為等級(jí),規(guī)定:得分低于70分評(píng)為D,70100分評(píng)為C,10011評(píng)為B115130分評(píng)為A,根據(jù)目前的統(tǒng)計(jì),請(qǐng)你估計(jì)全區(qū)該年級(jí)4500名考生中,考試成績(jī)?cè)u(píng)為B級(jí)及其以上的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,AB4cm,點(diǎn)M為邊BC的中點(diǎn),點(diǎn)N為邊AB上的任意一點(diǎn)(不與點(diǎn)AB重合).若點(diǎn)B關(guān)于直線(xiàn)MN的對(duì)稱(chēng)點(diǎn)B'恰好落在等邊△ABC的邊上,則BN的長(zhǎng)為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,過(guò)原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點(diǎn)DOB的中點(diǎn),點(diǎn)E是線(xiàn)段AB上的動(dòng)點(diǎn),連結(jié)DE,作DFDE,交OA于點(diǎn)F,連結(jié)EF.已知點(diǎn)EA點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線(xiàn)段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

(1)如圖1,當(dāng)t=3時(shí),求DF的長(zhǎng).

(2)如圖2,當(dāng)點(diǎn)E在線(xiàn)段AB上移動(dòng)的過(guò)程中,DEF的大小是否發(fā)生變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出tan∠DEF的值.

(3)連結(jié)AD,當(dāng)ADDEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解居民的環(huán)保意識(shí),社區(qū)工作人員在光明小區(qū)隨機(jī)抽取了若干名居民開(kāi)展主題為打贏藍(lán)天保衛(wèi)戰(zhàn)的環(huán)保知識(shí)有獎(jiǎng)問(wèn)答活動(dòng),并用得到的數(shù)據(jù)繪制了如圖條形統(tǒng)計(jì)圖(得分為整數(shù),滿(mǎn)分為10分,最低分為6分)

請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)本次調(diào)查一共抽取了   名居民;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)社區(qū)決定對(duì)該小區(qū)500名居民開(kāi)展這項(xiàng)有獎(jiǎng)問(wèn)答活動(dòng),得10分者設(shè)為一等獎(jiǎng),請(qǐng)你根據(jù)調(diào)查結(jié)果,幫社區(qū)工作人員估計(jì)需準(zhǔn)備多少份一等獎(jiǎng)獎(jiǎng)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)概念

在兩個(gè)等腰三角形中,如果其中一個(gè)三角形的底邊長(zhǎng)和底角的度數(shù)分別等于另一個(gè)三角形的腰長(zhǎng)和頂角的度數(shù),那么稱(chēng)這兩個(gè)等腰三角形互為姊妹三角形.

概念理解

1)如圖①,在ABC中,ABAC,請(qǐng)用直尺和圓規(guī)作出它的姊妹三角形(保留作圖痕跡,不寫(xiě)作法).

特例分析

2)①在ABC中,ABAC,∠A30°,,求它的姊妹三角形的頂角的度數(shù)和腰長(zhǎng);

②如圖②,在ABC中,ABAC,DAC上一點(diǎn),連接BD.若ABCABD互為姊妹三角形,且ABC∽△BCD,則∠A   °

深入研究

3)下列關(guān)于姊妹三角形的結(jié)論:

①每一個(gè)等腰三角形都有姊妹三角形;

②等腰三角形的姊妹三角形是銳角三角形;

③如果兩個(gè)等腰三角形互為姊妹三角形,那么這兩個(gè)三角形可能全等;

④如果一個(gè)等腰三角形存在兩個(gè)不同的姊妹三角形,那么這兩個(gè)三角形也一定互為姊妹三角形.

其中所有正確結(jié)論的序號(hào)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x=﹣mxm2時(shí),多項(xiàng)式ax2+bx+4a+1的值都相等,且m1,若當(dāng)1x2時(shí),存在x的值,使多項(xiàng)式ax2+bx+4a+1的值為3,則a的取值范圍是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案