精英家教網 > 初中數學 > 題目詳情
如圖,AB=CD,點E、F分別是BC、AD中點,延長BA,CD分別與EF的延長線交于點P、Q,則BP與CQ的大小關系是BP      CQ(填“>”“<”“=”) 。
=

試題分析:連接BD,取BD的中點M,連接EM、FM,延長QE到點O,使QE=OE,則可證得△BOE≌△COQ,所以BO=CQ,∠O=∠CQF,根據三角形的中位線性質可得FM//AB且FM=AB,EM//CD且EM=CD,再結合AB=CD可得EM=FM,即可證得∠MEF=∠MFE,再根據平行線的性質可得∠BPF=∠CQF,問題得證.
連接BD,取BD的中點M,連接EM、FM,延長QE到點O,使QE=OE,

則可證得△BOE≌△COQ
所以BO=CQ,∠O=∠CQF
因為F是AD的中點
所以FM是△ABD的中位線
所以FM//AB且FM=AB
同理EM//CD且EM=CD
因為AB=CD
所以EM=FM
所以∠MEF=∠MFE
因為∠BPF=∠MFE,∠CQF=∠MEF
所以∠BPF=∠CQF
因為∠O=∠CQF
所以∠BPF=∠O
所以BP=BO
因為BO=CQ
所以BP=CQ.
點評:解題的關鍵是熟記三角形的中位線定理:三角形的中位線平行于第三邊,且等于第三邊的一半.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

“斜邊和一條直角邊對應相等的兩個直角三角形全等”,類似地,可以得到“滿足    的兩個直角三角形相似”.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

把一張形狀是矩形的紙片剪去其中某一個角,剩下的部分是一個多邊形,則這個多邊形的內角和不可能是(  )。
A.720°B.540°C.360°D.180°

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知△ABC中,∠C=90º,D是AB上一點,DE⊥CD于D,交BC于E,且有AC=AD=CE。求證:

(1)∠ACD=∠CED
(2)DE=CD

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,已知有一張三角形紙片ABC的一邊AB=10,若D為AB邊上的點,過點D作DE//BC交AC于點E,分別過點D、E作DF⊥BC,EG⊥BC,垂足分別為點F、點G,把三角形紙片ABC分別沿DE、DF、EG按圖1方式折疊,點A、B、C分別落在A´、B´、C´處.若A´、B´、C´在矩形DFGE內或者其邊上,且互不重合,此時我們稱△A´B´C´(即圖中陰影部分)為“重疊三角形”.

(1)實驗操作:當AD=4時,①若∠A=90°,AB=AC,請在圖2中畫出“重疊三角形”,= ; 
②若AB=AC,BC=12,如圖3,= ;③若∠B=30°,∠C=45°,如圖4,= ;                     
(2)實驗探究:若△ABC為等邊三角形(如圖5),設AD的長為m,若重疊三角形A´B´C´存在,試用含m的代數式表示重疊三角形A´B´C´的面積,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF.有以下結論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的有(   ).
A.1個B.2個C.3個 D.4個

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,AD是高,矩形PQMN的頂點P、N分別在AB、AC上,QM在邊BC上,若BC=80,AD=60,PN=2PQ,求矩形PQMN的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC,若三角形ABC的邊長為1,AE=2,則CD的長為_______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

一個正多邊形的每個外角為15°,則這個正多邊形的邊數為     

查看答案和解析>>

同步練習冊答案