【題目】如圖,在△ABC中,AB=AC,D在邊BC上,以A為圓心,AD長為半徑畫圓弧,交邊BC的另一點E,交邊AC于F,連接AE,EF.
(1)求證:△ABD≌△ACE;
(2)若∠ADB=3∠CEF,請判斷EF與AB有怎樣的位置關(guān)系?并說明理由.

【答案】
(1)證明:由題意可知AD=AE=AF,

∴∠ADE=∠AED,

∴∠ADB=∠AEC,

∵AB=AC,

∴∠B=∠C,

在△ABD和△ACD中, ,

∴△ABD≌△ACD;


(2)解:∵∠ADB=∠AEC,∠ADB=3∠CEF,

∴∠AEF=2∠CEF,

∵AE=AF,

∴∠AFE=∠AEF=2∠CEF,

∴∠CEF=∠C,

∵△ABD≌△ACD,

∴∠B=∠C,

∴∠CEF=∠B,

∴EF∥AB.


【解析】(1)根據(jù)全等三角形的判定定理得到△ABD≌△ACD;(2)根據(jù)已知條件得到∠AEF=2CEF,根據(jù)等腰三角形的性質(zhì)得到∠AFE=∠AEF=2∠CEF,等量代換得到∠CEF=∠C,根據(jù)全等三角形的性質(zhì)得到∠B=∠C,于是得到結(jié)論;
【考點精析】通過靈活運用直線與圓的三種位置關(guān)系,掌握直線與圓有三種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人駕車從鄉(xiāng)村進城.各時間段的行駛速度如圖所示.當(dāng)時,其行駛路程與時間之間的函數(shù)表達式是________,當(dāng)時,其行駛路程與時間之間的函數(shù)表達式是________,當(dāng)時,其行駛路程與時間之間的函數(shù)表達式是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格線的交點叫格點,格點P是∠AOB的邊OB上的一點(請利用網(wǎng)格作圖,保留作圖痕跡).
(1)過點P畫OB的垂線,交OA于點C;
(2)線段的長度是點O到PC的距離;
(3)PC<OC的理由是;
(4)過點C畫OB的平行線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料并解答下列問題.

你知道嗎?一些代數(shù)恒等式可以用平面圖形的面積來表示,例如(2ab)(ab)2a23abb2就可以用圖甲中的①或②的面積表示.

(1)請寫出圖乙所表示的代數(shù)恒等式;

(2)畫出一個幾何圖形,使它的面積能表示(ab)(a3b)a24ab3b2;

(3)請仿照上述式子另寫一個含有a,b的代數(shù)恒等式,并畫出與之對應(yīng)的幾何圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細閱讀下面例題,解答問題:

例題:已知二次三項式x24xm有一個因式是(x3),求另一個因式以及m的值。

解:設(shè)另一個因式為(xn),得 x24xm=(x3)(xn

x24xmx2+(n3x3n

解得:n=-7 m=-21 另一個因式為(x7),m的值為-21

問題:仿照以上方法解答下面問題:

已知二次三項式2x23xk有一個因式是(2x5),求另一個因式以及k的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=﹣x+2與x軸,y軸分別交于點A,B,在y軸上有一點C(0,4),動點M從點A出發(fā)以毎秒1個単位長度的速度沿x軸向左運動,設(shè)運動的時間為t秒.

(1)求點A的坐標;

(2)請從A,B兩題中任選一題作答.

A.求COM的面積S與時間t之間的函數(shù)表達式;

B.當(dāng)ABM為等腰三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為開展體育大課間活動,需要購買籃球與足球若干個.已知購買2個籃球和3個足球共需要380元;購買4個籃球和5個足球共需要700元.
(1)求購買一個籃球、一個足球各需多少元?
(2)若體育老師帶了6000元去購買這種籃球與足球共80個.由于數(shù)量較多,店主給出“一律打九折”的優(yōu)惠價,那么他最多能購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家蔬菜公司收購到某種綠色蔬菜140噸,準備加工后進行銷售,銷售后獲利情況如表所示:

銷售方式

粗加工后銷售

精加工后銷售

每噸獲利(元)

1000

2000

已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時進行.受季節(jié)等條件的限制,公司必須在一定時間內(nèi)將這批蔬菜全部加工后銷售完.
(1)如果要求12天剛好加工完140噸蔬菜,則公司應(yīng)安排幾天精加工,幾天粗加工?
(2)如果先進行精加工,然后進行粗加工. ①試求出銷售利潤W元與精加工的蔬菜噸數(shù)m之間的函數(shù)關(guān)系式;
②若要求在不超過10天的時間內(nèi),將140噸蔬菜全部加工完后進行銷售,則加工這批蔬菜最多獲得多少利潤?此時如何分配加工時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,∠BAC=90°,分別過B、C向過A的直線作垂線,垂足分別為E、F.

(1)求證:△ABE≌△CAF

(2)如圖①過A的直線與斜邊BC不相交時,試探索EF、 BE、CF三條線段的關(guān)系;

(3)如圖②過A的直線與斜邊BC相交時,其他條件不變,若BE=10,CF=3,求FE長.

查看答案和解析>>

同步練習(xí)冊答案