【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結CN.試探究∠ABC與∠ACN的數(shù)量關系,并說明理由.
(1)證明見試題解析;(2)結論∠ABC=∠ACN仍成立,理由見試題解析;(3)∠ABC=∠ACN,理由見試題解析.
解析試題分析:(1)利用SAS可證明△BAM≌△CAN,繼而得出結論;
(2)也可以通過證明△BAM≌△CAN,得出結論,和(1)的思路完全一樣;
(3)首先得出∠BAC=∠MAN,從而判定△ABC∽△AMN,得到,根據(jù)∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,從而判定△BAM∽△CAN,得出結論.
解答:(1)證明:∵△ABC、△AMN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.
(2)解:結論∠ABC=∠ACN仍成立.理由如下:
∵△ABC、△AMN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.
(3)解:∠ABC=∠ACN.理由如下:
∵BA=BC,MA=MN,頂角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴,則,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.
考點:1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì);3.等邊三角形的性質(zhì).
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平行四邊形ABCD中,E為CD上一點,連結AE,BD,且AE,BD交于點F,S△DEF∶S△ABF=4∶25,求DE∶EC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,點E是矩形ABCD中CD邊上一點,△BCE沿BE折疊為△BFE,點F落在AD上.
(1)求證:△ABF∽△DFE
(2)若△BEF也與△ABF相似,請求出的值 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知:如圖,正方形ABCD的邊長為a,BM,DN分別平分正方形的兩個外角,且滿足 ∠MAN=45°,連結MC,NC,MN.
(1)填空:與△ABM相似的三角形是△ ,BM·DN= ;(用含a的代數(shù)式表示)
(2)求∠MCN的度數(shù);
(3)猜想線段BM,DN和MN之間的數(shù)量關系并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,△ABC三個定點坐標分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)請畫出△ABC關于y軸對稱的△A1B1C1;
(2)以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內(nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD·AB;
(3)若⊙O的半徑為2,∠ACD=300,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,點P是△ABC的外角∠BCN的角平分線上一個動點,點P′是點P關于直線BC的對稱點,連結PP′交BC于點M,BP′交AC于D,連結BP、AP′、CP′.
(1)若四邊形BPCP′為菱形,求BM的長;
(2)若△BMP′∽△ABC,求BM的長;
(3)若△ABD為等腰三角形,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:單選題
如圖,一個簡單幾何體的三視圖的主視圖與左視圖都為正三角形,其俯視圖為正方形,則這個幾何體是( )
A.四棱錐 | B.正方體 | C.四棱柱 | D.三棱錐 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com