【題目】某書商去圖書批發(fā)市場購買某本書,第一次用12000元購書若干本,并把該書按定價7元/本出售,很快售完,由于該書暢銷,書商又去批發(fā)市場采購該書,第二次購書時,每本書批發(fā)價已比第一次提高了20%,他用15000元所購書數(shù)量比第一次多了100本.
(1)求第一次購書的進價是多少元一本?第二次購進多少本書?
(2)若第二次購進書后,仍按原定價7元/本售出2000本時,出現(xiàn)滯銷,書商便以定價的n折售完剩余的書,結(jié)果第二次共盈利100m元(n、m為正整數(shù)),求相應(yīng)的n、m的值.
【答案】(1)第一次購書的進價為5元/本,且第二次買了2500本;(2)當(dāng)n=4時,m=4;當(dāng)n=6時,m=11;當(dāng)n=8時,m=18.
【解析】
(1)設(shè)第一次購書的進價為x元/本,根據(jù)“第二次購書時,每本書批發(fā)價已比第一次提高了20%,他用15000元所購書數(shù)量比第一次多了100本”列出方程,求出方程的解即可得到結(jié)果;
(2)根據(jù)題意列出關(guān)于m與n的方程,由m與n為正整數(shù),且n的范圍確定出m與n的值即可.
(1)設(shè)第一次購書的進價為x元/本,
根據(jù)題意得:,
解得:x=5,
經(jīng)檢驗x=5是分式方程的解,且符合題意,
∴15000÷(5×1.2)=2500(本),
則第一次購書的進價為5元/本,且第二次買了2500本;
(2)第二次購書的進價為5×1.2=6(元),
根據(jù)題意得:2000×(7-6)+(2500-2000)×(-6)=100m,
整理得:7n=2m+20,即2m=7n-20,
∴m=,
∵m,n為正整數(shù),且1≤n≤9,
∴當(dāng)n=4時,m=4;當(dāng)n=6時,m=11;當(dāng)n=8時,m=18.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點A、B分別表示點﹣5、3,M、N兩點分別從A、B同時出發(fā)以3cm/s、1cm/s的速度沿數(shù)軸向右運動.
(1)求線段AB的長;
(2)求當(dāng)點M、N重合時,它們運動的時間;
(3)M、N在運動的過程中是否存在某一時刻,使BM=2BN.若存在請求出它們運動的時間,若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點O是∠BCA與∠ABC的平分線的交點,過O作與BC平行的直線分別交AB、AC于D、E.已知△ABC的周長為15,BC的長為6,求△ADE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為3的正六邊形鐵絲框ABCDEF變形為以點A為圓心,AB為半徑的扇形(忽略鐵絲的粗細).則所得扇形AFB(陰影部分)的面積為( )
A.6π
B.18
C.18π
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在x軸上方,∠BOA=90°且其兩邊分別與反比例函數(shù)y=﹣ 、y= 的圖象交于B、A兩點,則∠OAB的正切值為()
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過邊長為1的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當(dāng)PA=CQ時,連PQ交AC邊于D,則DE的長為( )
A. B. C. D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、E分別在直線AC和DF上,若∠AGB=∠EHF,∠C=∠D,可以證明∠A=∠F.請完成下面證明過程中的各項“填空”.
證明:∵∠AGB=∠EHF(理由: )
∠AGB= (對頂角相等)
∴∠EHF=∠DGF,∴DB∥EC(理由: )
∴ =∠DBA(兩直線平行,同位角相等)
又∵∠C=∠D,∴∠DBA=∠D,
∴DF∥ (內(nèi)錯角相等,兩直線平行)
∴∠A=∠F(理由: ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,DE∥AB.請根據(jù)已知條件進行推理,分別得出結(jié)論,并在括號內(nèi)注明理由.
(1)∵DE∥AB,( 已知 )
∴∠2= . ( , )
(2)∵DE∥AB,(已知 )
∴∠3= .( , )
(3)∵DE∥AB(已知 ),
∴∠1+ =180°.( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)廣場上有旗桿,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,光線與水平面的夾角為72°,1米的豎立標桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com