【題目】如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG、DE.
n
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉角(0°< <360°)得到正方形OE’F’G’,如圖2.
①在旋轉過程中,當∠OAG’是直角時,求 的度數(shù);
②若正方形ABCD的邊長為1,在旋轉過程中,求AF’長的最大值和此時 的度數(shù),直接寫出結果不必說明理由.
【答案】
(1)證明:如圖1,延長ED交AG于點H,
∵點O是正方形ABCD兩對角線的交點,
∴OA=OD,OA⊥OD,
∵OG=OE,
在△AOG和△DOE中,
,
∴△AOG≌△DOE,
∴∠AGO=∠DEO,
∵∠AGO+∠GAO=90°,
∴∠GAO+∠DEO=90°,
∴∠AHE=90°,
即DE⊥AG;
(2)解:①在旋轉過程中,∠OAG′成為直角有兩種情況:
(Ⅰ)α由0°增大到90°過程中,當∠OAG′=90°時,
∵OA=OD= OG= OG′,
∴在Rt△OAG′中,sin∠AG′O= = ,
∴∠AG′O=30°,
∵OA⊥OD,OA⊥AG′,
∴OD∥AG′,
∴∠DOG′=∠AG′O=30°,
即α=30°;
(Ⅱ)α由90°增大到180°過程中,當∠OAG′=90°時,
同理可求∠BOG′=30°,
∴α=180°30°=150°.
綜上所述,當∠OAG′=90°時,α=30°或150°.
②如圖3,當旋轉到A. O、F′在一條直線上時,AF′的長最大,
∵正方形ABCD的邊長為1,
∴OA=OD=OC=OB= ,
∵OG=2OD,
∴OG′=OG= ,
∴OF′=2,
∴AF′=AO+OF′= +2,
∵∠COE′=45°,
∴此時α=315°
【解析】(1)延長ED交AG于點H,根據(jù)正方形的性質(zhì)得出得出OA=OD,OG=OE,再證△AOG≌△DOE,得出∠AGO=∠DEO,根據(jù)等量代換證明結論。
(2)①根據(jù)題意和銳角正弦的概念以及特殊角的三角函數(shù)值得到∠AG′O=30°,分兩種情況求出α的度數(shù)。
②根據(jù)正方形的性質(zhì)分別求出OA和OF的長,根據(jù)旋轉變換的性質(zhì)求出AF′長的最大值和此時α的度數(shù)。
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 已知點A、點B是直線上的兩點,AB =12厘米,點C在線段AB上,且AC=8厘米.點P、點Q是直線上的兩個動點,點P的速度為1厘米/秒,點Q的速度為2厘米/秒.點P、Q分別從點C、點B同時出發(fā),在直線上運動,則經(jīng)過 秒時線段PQ的長為5厘米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y果.
下面有三個推斷:
①當投擲次數(shù)是500時,計算機記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;
③若再次用計算機模擬實驗,則當投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.
其中合理的是( )
A.①
B.②
C.①②
D.①③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是半圓O的直徑,點P是半圓上一點,連結BP,并延長BP到點C,使PC=PB,連結AC.
(1)求證:AB=AC.
(2)若AB=4,∠ABC=30°,①求弦BP的長;②求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種牛奶,進價為每箱24元,規(guī)定售價不低于進價現(xiàn)在的售價為每箱36元,每月可銷售60箱市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設每箱牛奶降價x元(x為正整數(shù)),每月的銷量為y箱.
(1)寫出y與x之間的函數(shù)關系式和自變量x的取值范圍;
(2)市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠XOY=90°,點A、B分別在射線OX、OY上移動(不與點O重合),BE是∠ABY的平分線,BE的反向延長線與∠OAB的平分線相交于點C.
(1)當∠OAB=40°時,∠ACB= 度;
(2)隨點A、B的移動,試問∠ACB的大小是否變化?如果保持不變,請給出證明;如果發(fā)生變化,請求出變化范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請你補全證明過程:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:EF∥CD
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=90°,∠ACB=90°①( )
∴∠DGB=∠ACB ②( )
∴DG∥AC ③( )
∴∠2= ④________ ⑤( )
又∠1=∠2 ⑥( )
∴∠1=∠DCA ⑦( )
∴EF∥CD ⑧( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y= +bx+c的圖象如圖所示,對稱軸為直線x=1.有位學生寫出了以下五個結論:①ac>0;②方程ax2+bx+c=0的兩根是 =﹣1, =3;③2a﹣b=0;④當x>1時,y隨x的增大而減;則以上結論中正確的有( ).
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在矩形ABCD中,BC=8,CD=6,將△BCD沿對角線BD翻折,點C落在點C′處,BC′交AD于點E,則△BDE的面積為( 。
A. B. C. 21D. 24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com