【題目】如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG、DE.
n
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉角(0°< <360°)得到正方形OE’F’G’,如圖2.
①在旋轉過程中,當∠OAG’是直角時,求 的度數(shù);
②若正方形ABCD的邊長為1,在旋轉過程中,求AF’長的最大值和此時 的度數(shù),直接寫出結果不必說明理由.

【答案】
(1)證明:如圖1,延長ED交AG于點H,

∵點O是正方形ABCD兩對角線的交點,

∴OA=OD,OA⊥OD,

∵OG=OE,

在△AOG和△DOE中,

,

∴△AOG≌△DOE,

∴∠AGO=∠DEO,

∵∠AGO+∠GAO=90°,

∴∠GAO+∠DEO=90°,

∴∠AHE=90°,

即DE⊥AG;


(2)解:①在旋轉過程中,∠OAG′成為直角有兩種情況:

(Ⅰ)α由0°增大到90°過程中,當∠OAG′=90°時,

∵OA=OD= OG= OG′,

∴在Rt△OAG′中,sin∠AG′O= = ,

∴∠AG′O=30°,

∵OA⊥OD,OA⊥AG′,

∴OD∥AG′,

∴∠DOG′=∠AG′O=30°,

即α=30°;

(Ⅱ)α由90°增大到180°過程中,當∠OAG′=90°時,

同理可求∠BOG′=30°,

∴α=180°30°=150°.

綜上所述,當∠OAG′=90°時,α=30°或150°.

②如圖3,當旋轉到A. O、F′在一條直線上時,AF′的長最大,

∵正方形ABCD的邊長為1,

∴OA=OD=OC=OB=

∵OG=2OD,

∴OG′=OG= ,

∴OF′=2,

∴AF′=AO+OF′= +2,

∵∠COE′=45°,

∴此時α=315°


【解析】(1)延長ED交AG于點H,根據(jù)正方形的性質(zhì)得出得出OA=OD,OG=OE,再證△AOG≌△DOE,得出∠AGO=∠DEO,根據(jù)等量代換證明結論。
(2)①根據(jù)題意和銳角正弦的概念以及特殊角的三角函數(shù)值得到∠AG′O=30°,分兩種情況求出α的度數(shù)。
②根據(jù)正方形的性質(zhì)分別求出OA和OF的長,根據(jù)旋轉變換的性質(zhì)求出AF′長的最大值和此時α的度數(shù)。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 已知點A、點B是直線上的兩點,AB =12厘米,點C在線段AB上,且AC=8厘米點P、點Q是直線上的兩個動點,點P的速度為1厘米秒,點Q的速度為2厘米/秒P、Q分別從點C、點B同時出發(fā),在直線上運動,則經(jīng)過 秒時線段PQ的長為5厘米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y果.

下面有三個推斷:
①當投擲次數(shù)是500時,計算機記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;
③若再次用計算機模擬實驗,則當投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.
其中合理的是( )
A.①
B.②
C.①②
D.①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是半圓O的直徑,點P是半圓上一點,連結BP,并延長BP到點C,使PC=PB,連結AC.

(1)求證:AB=AC.
(2)若AB=4,∠ABC=30°,①求弦BP的長;②求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種牛奶,進價為每箱24元,規(guī)定售價不低于進價現(xiàn)在的售價為每箱36元,每月可銷售60箱市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設每箱牛奶降價x元(x為正整數(shù)),每月的銷量為y箱.
(1)寫出y與x之間的函數(shù)關系式和自變量x的取值范圍;
(2)市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠XOY90°,點A、B分別在射線OX、OY上移動(不與點O重合),BE是∠ABY的平分線,BE的反向延長線與∠OAB的平分線相交于點C

1)當∠OAB40°時,∠ACB   度;

2)隨點A、B的移動,試問∠ACB的大小是否變化?如果保持不變,請給出證明;如果發(fā)生變化,請求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請你補全證明過程:如圖,DGBC,ACBCEFAB,∠1=2,求證:EFCD

證明:∵DGBC,ACBC(已知)

∴∠DGB=90°,∠ACB=90°①(

∴∠DGB=ACB ( )

DGAC ( )

∴∠2= ________ ⑤(

又∠1=2 ⑥(

∴∠1=DCA ⑦(

EFCD ⑧(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y= +bx+c的圖象如圖所示,對稱軸為直線x=1.有位學生寫出了以下五個結論:①ac>0;②方程ax2+bx+c=0的兩根是 =﹣1, =3;③2a﹣b=0;④當x>1時,y隨x的增大而減;則以上結論中正確的有( ).

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在矩形ABCD中,BC8CD6,將BCD沿對角線BD翻折,點C落在點C處,BCAD于點E,則BDE的面積為( 。

A. B. C. 21D. 24

查看答案和解析>>

同步練習冊答案