【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷(xiāo)售圖像,1是產(chǎn)品銷(xiāo)售量y()與時(shí)間t()的函數(shù)關(guān)系,2是一件產(chǎn)品的銷(xiāo)售利潤(rùn)z()與時(shí)間t()的函數(shù)關(guān)系,已知日銷(xiāo)售利潤(rùn)=日銷(xiāo)售量×每件產(chǎn)品的銷(xiāo)售利潤(rùn),下列結(jié)論錯(cuò)誤的是( )。

A. 24天的銷(xiāo)售量為200B. 10天銷(xiāo)售一件產(chǎn)品的利潤(rùn)是15

C. 12天與第30天這兩天的日銷(xiāo)售利潤(rùn)相等D. 30天的日銷(xiāo)售利潤(rùn)是750

【答案】C

【解析】

1是產(chǎn)品日銷(xiāo)售量y(單位:件)與時(shí)間t單位:天)的函數(shù)圖象,觀察圖象可對(duì)A做出判斷;通過(guò)圖2求出zt的函數(shù)關(guān)系式,求出當(dāng)t=10時(shí)z的值,做出對(duì)B的判斷,分別求出第12天和第30天的銷(xiāo)售利潤(rùn),對(duì)CD進(jìn)行判斷.

解:A、根據(jù)圖①可得第24天的銷(xiāo)售量為200件,故正確;

B、設(shè)當(dāng)0≤t≤20,一件產(chǎn)品的銷(xiāo)售利潤(rùn)z(單位:元)與時(shí)間t(單位:天)的函數(shù)關(guān)系為z=kx+b,把(0,25),(205)代入得:,

得,z=-t+250≤t≤20),

當(dāng)20t≤30時(shí)候,由圖2z固定為5,則:

,,當(dāng)t=10時(shí),z=15,因此B也是正確的;

C、第12天的銷(xiāo)售利潤(rùn)為:[100+200-100÷24×12]25-12=2150元,第30天的銷(xiāo)售利潤(rùn)為:150×5=750元,不相等,故C錯(cuò)誤;

D、第30天的銷(xiāo)售利潤(rùn)為:150×5=750元,正確;

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD=AB,BAD的平分線交BC于點(diǎn)E,DHAE于點(diǎn)H,連接BH并延長(zhǎng)交CD于點(diǎn)F,連接DEBF于點(diǎn)O,下列結(jié)論:①∠AED=CED;OE=OD;BH=HF;BC﹣CF=2HE;AB=HF,其中正確的有(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,點(diǎn)A在反比例函數(shù)y=(k≠0)的圖象上,點(diǎn)Dy軸上,點(diǎn)B、點(diǎn)Cx軸上.若平行四邊形ABCD的面積為10,則k的值是( 。

A. ﹣10 B. ﹣5 C. 5 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱(chēng)這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中有一△BOD,,把 BO 繞點(diǎn)O 逆時(shí)針旋轉(zhuǎn) 90°OA, 連接AB,作于點(diǎn) C,點(diǎn)B 的坐標(biāo)為(1,3.

1)求直線AB 的解析式;

2)若AB 中點(diǎn)為 M,連接 CM,動(dòng)點(diǎn) P、Q 同時(shí)從 C 點(diǎn)出發(fā),點(diǎn) P 沿射線CM 以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q沿線段CD 以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn) D 運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到D 點(diǎn)時(shí),PQ同時(shí)停止運(yùn)動(dòng),設(shè)△PQO 的面積為 S),運(yùn)動(dòng)時(shí)間為t秒,求St的函數(shù)關(guān)系式,并直接寫(xiě)出自變量t的取值范圍;

3)在(2)的條件下,是否存在這樣的 P 點(diǎn),使得P、OB為頂點(diǎn)的三角形是直角三角形?若存在,求出對(duì)應(yīng)的t 值和此時(shí)Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線BE交AC于點(diǎn)E,過(guò)點(diǎn)E作直線BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.

(1)求證:AC是⊙O的切線;

(2)過(guò)點(diǎn)E作EH⊥AB于點(diǎn)H,求證:EF平分∠AEH;

(3)求證:CD=HF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,過(guò)原點(diǎn)O及點(diǎn)A(0,4)、C(12,0)作矩形OABC,∠AOC的平分線交AB于點(diǎn)D.點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿射線OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P移動(dòng)到點(diǎn)D時(shí),求出此時(shí)t的值.

(2)當(dāng)t為何值時(shí),△PQB為直角三角形.

(3)已知過(guò)O、P、Q三點(diǎn)的拋物線解析式為y=﹣.問(wèn)是否存在某一時(shí)刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】放假時(shí)小華父子倆一同出發(fā)去露營(yíng),步行途中小華發(fā)現(xiàn)睡袋忘拿了跑步回家取,之后立刻返程跑步追趕爸爸,期間爸爸繼續(xù)步行去往露營(yíng)地,會(huì)合時(shí)爸爸發(fā)現(xiàn)還需要探照燈,為節(jié)約時(shí)間爸爸乘車(chē)回家去拿,小華繼續(xù)步行至露營(yíng)地,爸爸拿到探照燈后乘車(chē)也到了終點(diǎn)(假定步行、跑步和汽車(chē)均為勻速,且二人取物品時(shí)間忽略不計(jì)),二人之間的距離s(米)與他們出發(fā)時(shí)間t(分鐘)之間的關(guān)系如圖所示,則當(dāng)爸爸到家時(shí),小華與露營(yíng)地相距_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在矩形中,,是線段邊上的任意一點(diǎn)(不含端點(diǎn)),連接,過(guò)點(diǎn)

在線段上是否存在不同于的點(diǎn),使得?若存在,求線段之間的數(shù)量關(guān)系;若不存在,請(qǐng)說(shuō)明理由;

當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),對(duì)應(yīng)的點(diǎn)也隨之在上運(yùn)動(dòng),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案