【題目】下列事件:①擲一枚普通正方體骰子,擲得的點數(shù)為奇數(shù);②口袋中有紅、白、黑球各一個,從中摸出一個黃球;③擲一枚質(zhì)地均勻的硬幣正面朝上.其中是隨機事件的有( 。

A.①②B.①③C.②③D.①②③

【答案】B

【解析】

根據(jù)在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件,即可判斷.

解:擲一枚普通正方體骰子,擲得的點數(shù)為奇數(shù),屬于隨機事件;

口袋中有紅、白、黑球各一個,從中摸出一個黃球,屬于不可能事件;

擲一枚質(zhì)地均勻的硬幣正面朝上,屬于隨機事件.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鮮花餅是云南的特色小吃,也是中國四大月餅流派滇式月餅的經(jīng)典代表之一,深受人們喜愛.現(xiàn)某車間要為鮮花餅制作長方體包裝盒,已知一個盒子由一個盒身和兩個盒底構(gòu)成,每一張紙板可以做盒身10個或盒底30個.現(xiàn)有紙板100張,應(yīng)用多少張制作盒身,多少張制作盒底,才能使盒身和盒底正好配套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:

(1)5x2+10x+5

(2)(a+4)(a﹣4)+3(a+2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線x軸交于AB兩點(點A在點B左側(cè)),與y軸交于點C,連接BC,過點AAD//BCy軸于點D.

1求平行線ADBC之間的距離;

2如圖1,點P為線段BC上方拋物線上的一動點,當(dāng)PCB的面積最大時,Q從點P出發(fā),先沿適當(dāng)?shù)穆窂竭\動到直線BC上點M處,再沿垂直于直線BC的方向運動到直線AD上的點N處,最后沿適當(dāng)?shù)穆窂竭\動到點B處停止.當(dāng)點Q的運動路徑最短時,求點M的坐標(biāo)及點Q經(jīng)過的最短路徑的長;

3如圖2,將拋物線以每秒個單位長度的速度沿射線AD方向平移,拋物線上的點A、C平移后的對應(yīng)點分別記作,當(dāng)是以為底邊的等腰三角形時,將等腰繞點D逆時針旋轉(zhuǎn)一周,記旋轉(zhuǎn)中的,若直線y軸交于點K,直線與直線AD交于點I,當(dāng)是以KI為底邊的等腰三角形時,求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)中比﹣2小的是( )

A. 1 B. 0 C. 1 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】運用乘法公式計算(x+3)2的結(jié)果是(
A.x2+9
B.x2﹣6x+9
C.x2+6x+9
D.x2+3x+9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔(dān).張剛按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.
(1)張剛在開始創(chuàng)業(yè)的第一個月將銷售單價定為20元,那么政府這個月為他承擔(dān)的總差價為多少元?
(2)設(shè)張剛獲得的利潤為w(元),當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果張剛想要每月獲得的利潤不低于3000元,那么政府為他承擔(dān)的總差價最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市2016年初中畢業(yè)生人數(shù)約為63 000,數(shù)63 000用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ACBM中,∠C=∠M=90°,∠CAB=∠MAB=60°,將△ABM繞點A順時針旋轉(zhuǎn)α(α<∠BAC),得到Rt△ADE,其中斜邊AE交BC于點F,直角邊DE分別交AB,BC于點G,H.

(1)求證:△ACB≌△AMB;
(2)若α=30°,求證:四邊形ADHC是正方形;
(3)若∠AFG=70°,求α的值.

查看答案和解析>>

同步練習(xí)冊答案