【題目】已知線段AB=(為常數(shù)),點(diǎn)C為直線AB上一點(diǎn),點(diǎn)P、Q分別在線段BC、AC上,且滿足CQ=2AQ,CP=2BP.
(1)如圖,當(dāng)點(diǎn)C恰好在線段AB中點(diǎn)時(shí),則PQ=_______(用含的代數(shù)式表示);
(2)若點(diǎn)C為直線AB上任一點(diǎn),則PQ長(zhǎng)度是否為常數(shù)?若是,請(qǐng)求出這個(gè)常數(shù);若不是,請(qǐng)說明理由;
(3)若點(diǎn)C在點(diǎn)A左側(cè),同時(shí)點(diǎn)P在線段AB上(不與端點(diǎn)重合),請(qǐng)判斷2AP+CQ-2PQ與1的大小關(guān)系,并說明理由。
【答案】(1);(2);(3)2AP+CQ-2PQ<1
【解析】
(1)設(shè)AQ=x,BP=y,則CQ=2x,CP=2y.由AB=AQ+CQ+CP+PB= m,得到x+y=,由PQ=QC+CP=2x+2y即可得到結(jié)論;
(2)分五種情況討論:①若C在線段AB上;②若C在A的左邊;③若C在B的右邊;④若B與C重合,⑤若A與C重合.
(3)設(shè)AQ=x,BP=y,則CQ=2x,CP=2y.根據(jù)(2)得到PQ=,AP=PQ-AQ=.
代入2AP+CQ-2PQ即可得到結(jié)論.
(1)設(shè)AQ=x,BP=y,則CQ=2x,CP=2y.
∵AB=AQ+CQ+CP+PB= m,∴x+2x+2y+y=m,∴x+y=,PQ=QC+CP=2x+2y=2(x+y)=.
(2)分五種情況討論:
①若C在線段AB上,由(1)可得:PQ=.
②若C在A的左邊,如圖1.
設(shè)AQ=x,BP=y,則CQ=2x,CP=2y.
∵AB=CB-CA= (CP+PB)-(CQ+AQ)=m,∴(2y+y)-(x+2x)=m,∴y-x=,PQ=CP-CQ=2y-2x=2(y-x)=.
③若C在B的右邊,如圖2.
設(shè)AQ=x,BP=y,則CQ=2x,CP=2y.
∵AB=CA-CB= (CQ+AQ)-(CP+PB) =m,∴(2x+x)-(2y+y)=m,∴x-y=,PQ= CQ -CP=2x-2y=2(x-y)=.
④若B與C重合,則P與B也重合,如圖3.
設(shè)AQ=x,則CQ=BQ=2x,CP=2BP=0,∴PQ=BQ=2x,AB=3x=m,∴PQ=.
⑤若A與C重合,則Q與A也重合,如圖4.
設(shè)BP=y,則CQ=AQ=0,CP=2BP=2y,∴PQ=CP=2y,AB=3y=m,∴PQ=.
綜上所述:點(diǎn)C為直線AB上任一點(diǎn),則PQ長(zhǎng)度為常數(shù).
(3)如圖1.設(shè)AQ=x,BP=y,則CQ=2x,CP=2y.PQ=CP-CQ=2y-2x=2(y-x)=.
AP=PQ-AQ=.2AP+CQ-2PQ==0,∴2AP+CQ-2PQ<1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格圖中有一個(gè)格點(diǎn)三角形ABC.(注:頂點(diǎn)均在網(wǎng)格線交點(diǎn)處的三角形稱為格點(diǎn)三角形)
(1)請(qǐng)直接寫出sin∠ABC的值: ;
(2)請(qǐng)?jiān)趫D中畫格點(diǎn)三角形DEF,使得△DEF∽△ABC,且相似比為2∶1;
(3)請(qǐng)?jiān)趫D中確定格點(diǎn)M,使得△BCM的面積為6.如果符合題意的格點(diǎn)M不止一個(gè),請(qǐng)分別用M1、M2、M3…表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)“磁懸浮”的軌道架上做鋼球碰撞實(shí)驗(yàn),如圖 1 所示,軌道長(zhǎng)為 180,軌道架上有三個(gè)大小、質(zhì)量完全相同的鋼球、、,軌道左右各有一個(gè)鋼制擋板 和 ,其中 到左擋板的距離為 30, 到右擋板的距離為 60,、兩球相距40.現(xiàn)以軌道所在直線為數(shù)軸,假定 球在原點(diǎn),球代表的數(shù)為 40,如圖 2 所示,解答下列問題:
(1)在數(shù)軸上,找出 球及右擋板 所代表的數(shù),并填在圖中括號(hào)內(nèi).
(2)碰撞實(shí)驗(yàn)中(鋼球大小、相撞時(shí)間不記),鋼球的運(yùn)動(dòng)都是勻速,當(dāng)一鋼球以一速度撞向另一靜止鋼球時(shí),這個(gè)鋼球停留在被撞鋼球的位置,被撞鋼球則以同樣的速度向前運(yùn)動(dòng),鋼球撞到左右擋板則以相同的速度反向運(yùn)動(dòng).
①現(xiàn) 球以每秒 10 的速度向右勻速運(yùn)動(dòng),則 球第二次到達(dá) 球所在位置時(shí)用了 秒;經(jīng)過 63 秒時(shí),、、三球在數(shù)軸上所對(duì)應(yīng)的數(shù)分別是 、 、 ;
②如果、兩球同時(shí)開始運(yùn)動(dòng),球向左運(yùn)動(dòng), 球向右運(yùn)動(dòng),球速度是每秒 8,球速度是每秒 12,問:經(jīng)過多少時(shí)間 、 兩球相撞?相撞時(shí)在數(shù)軸上所對(duì)應(yīng)的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為聲援揚(yáng)州“運(yùn)河申遺”,某校舉辦了一次運(yùn)河知識(shí)競(jìng)賽,滿分10分,學(xué)生得分為整數(shù),成績(jī)達(dá)到6分以上(包括6分)為合格,達(dá)到9分以上(包含9分)為優(yōu)秀.這次競(jìng)賽中甲乙兩組學(xué)生成績(jī)分布的條形統(tǒng)計(jì)圖如圖所示.
(1)補(bǔ)充完成下面的成績(jī)統(tǒng)計(jì)分析表:
組別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | 6.7 | 3.41 | 90% | 20% | |
乙組 | 7.5 | 1.69 | 80% | 10% |
(2)小明同學(xué)說:“這次競(jìng)賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上表可知,小明是 組的學(xué)生;(填“甲”或“乙”)
(3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績(jī)好于乙組.但乙組同學(xué)不同意甲組同學(xué)的說法,認(rèn)為他們組的成績(jī)要好于甲組.請(qǐng)你給出兩條支持乙組同學(xué)觀點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過類比聯(lián)想,引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例,先閱讀再解決后面的問題:
原題:如圖1,點(diǎn)E,F分別在正方形ABCD的邊BC,CD上,,連接EF,求證:EF=BE+DF.
解題由于AB=AD,我們可以延長(zhǎng)CD到點(diǎn)G,使DG=BE,易得,可證.再證明,得EF=FG=DG+FD=BE+DF.
問題(1):如圖2,在四邊形ABCD中,AB=AD,,E,F分別是邊BC,CD上的點(diǎn),且,求證:EF=BE+FD;
問題(2):如圖3,在四邊形ABCD中,,,AB=AD=1,點(diǎn)E,F分別在四邊形ABCD的邊BC,CD上的點(diǎn),且,求此時(shí)的周長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.
(1)如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;
(2)如圖2,若點(diǎn)O在正方形的中心(即兩對(duì)角線的交點(diǎn)),則(1)中的結(jié)論是否仍然成立?請(qǐng)說明理由;
(3)如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過程中可形成什么圖形?
(4)如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部)移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說理)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是楊輝三角系數(shù)表,它的作用是指導(dǎo)讀者按規(guī)律寫出行如(a+b)展開式的系數(shù),請(qǐng)你仔細(xì)觀察下表中的規(guī)律,填出展開式中所缺的系數(shù)。
(1)、(a+b)=a+b
(2)、(a+b)=a+2ab+b
(3)、(a+b) =a+3ab+3ab+b
(4)、(a+b)=a+ ab+6ab+4ab+b
(5)(a+b)=a+ ab+ ab+ ab+ ab+b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知將一副三角板(直角三角板和直角三角板)的兩個(gè)頂點(diǎn)重合于點(diǎn).
(1)如圖1,將直角三角板繞點(diǎn)逆時(shí)針方向轉(zhuǎn)動(dòng),當(dāng)恰好平分時(shí),的度數(shù)是 _.
(2)如圖2,當(dāng)三角板擺放在內(nèi)部時(shí),作射線平分,射線平分,如果三角板在內(nèi)繞點(diǎn)任意轉(zhuǎn)動(dòng),的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.
(3)當(dāng)三角板繞點(diǎn)繼續(xù)轉(zhuǎn)動(dòng)到如圖3所示的位置時(shí),作射線平分,射線平分,請(qǐng)你求出此時(shí)鈍角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,動(dòng)點(diǎn)E,F分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).
(1)如圖1,當(dāng)點(diǎn)E在邊DC上自D向C移動(dòng),同時(shí)點(diǎn)F在邊CB上自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理;
(2)如圖2,當(dāng)E,F分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時(shí)CE:CD的值;
(3)如圖3,當(dāng)E,F分別在直線DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線段CP的最大值.
圖1 圖2 圖3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com