【題目】某學(xué)習(xí)小組在學(xué)習(xí)了函數(shù)及函數(shù)圖象的知識(shí)后,想利用此知識(shí)來(lái)探究周長(zhǎng)一定的矩形其邊長(zhǎng)分別為多少時(shí)面積最大請(qǐng)將他們的探究過(guò)程補(bǔ)充完整。
(1)列函數(shù)表達(dá)式:若矩形的周長(zhǎng)為8,設(shè)矩形的一邊長(zhǎng)為x,面積為y,則有y=_________。
(2)上述函數(shù)表達(dá)式中,自變量x的取值范圍是____________;
(3)列表:
x | ... | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | ... |
y | ... | 1.75 | 3 | 3.75 | 4 | 3.75 | 3 | m | ... |
寫出m=__________;
(4)畫圖:在平面直角坐標(biāo)系中已描出了上表中部分各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),請(qǐng)你畫出該函數(shù)的圖象;
(5)結(jié)合圖象可得:x=_______時(shí),矩形的面積最大: 寫出該函數(shù)的其它性質(zhì)(一條即可):_______________________________________.
【答案】(1)-x2+4x;(2)0<x<4;(3)1.75;(4)見(jiàn)解析;(5)2,當(dāng)0<x<2時(shí),y隨x增大而增大.
【解析】
(1)根據(jù)矩形的周長(zhǎng)=2(長(zhǎng)+寬),矩形的面積=長(zhǎng)×寬,即可列出函數(shù)表達(dá)式;
(2)根據(jù)y=-x2+4x,-x2+4x>0即可得出答案;
(3)把x=3.5代入解析式計(jì)算即可得;
(4)根據(jù)表格中的坐標(biāo)描點(diǎn)畫圖即可;
(5)結(jié)合圖象可得x=2時(shí),y有最大值,再根據(jù)函數(shù)的解析式及圖象寫出一條性質(zhì)即可.
(1)∵矩形的周長(zhǎng)=2(長(zhǎng)+寬),矩形的面積=長(zhǎng)×寬,
又∵矩形的周長(zhǎng)為8,面積為y,矩形的一邊長(zhǎng)為x,
∴由題意:y=x(4-x)=-x2+4x;
(2)∵y=-x2+4x,
∴x>0,且-x2+4x>0,
又∵-x2+4x>0解得x>0,x<4,
則自變量x的取值范圍是0<x<4;
(3)x=3.5時(shí),y=1.75,
∴m=1.75;
(4)函數(shù)圖象如圖所示:
(5)∵y=-(x-2)2+4,
∴x=2時(shí),y有最大值,
性質(zhì):當(dāng)0<x<2時(shí),y隨x的增大而增大.(答案不唯一).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,的頂點(diǎn)坐標(biāo)分別是,對(duì)于的橫長(zhǎng)、縱長(zhǎng)、縱橫比給出如下定義:
將中的最大值,稱為的橫長(zhǎng),記作;將中的最大值,稱為的縱長(zhǎng),記作;將叫做的縱橫比,記作.
例如:如圖的三個(gè)頂點(diǎn)的坐標(biāo)分別是,則,
所以.
如圖2,點(diǎn),
點(diǎn),
則的縱橫比______
的縱橫比______;
點(diǎn)F在第四象限,若的縱橫比為1,寫出一個(gè)符合條件的點(diǎn)F的坐標(biāo);
點(diǎn)M是雙曲線上一個(gè)動(dòng)點(diǎn),若的縱橫比為1,求點(diǎn)M的坐標(biāo);
如圖3,點(diǎn)以為圓心,1為半徑,點(diǎn)N是上一個(gè)動(dòng)點(diǎn),直接寫出的縱橫比的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2,若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,如圖為點(diǎn)P,Q的“相關(guān)矩形”示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(1,0),
①若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)正方形RSKT頂點(diǎn)R的坐標(biāo)為(-1,1),K的坐標(biāo)為(2,-2),點(diǎn)M的坐標(biāo)為(m,3),若在正方形RSKT邊上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠AOC:∠BOC=2:1,將直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.
(1)在圖1中,∠AOC= °,∠MOC= °;
(2)將圖1中的三角板按圖2的位置放置,使得OM在射線QA上,求∠CON的度數(shù);
(3)將上述直角三角板按圖3的位置放置,OM在∠BOC的內(nèi)部,說(shuō)明∠BON﹣∠COM的值固定不變.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過(guò)點(diǎn)A作∠DAF=∠DAB,過(guò)點(diǎn)D作AF的垂線,垂足為F,交AB的延長(zhǎng)線于點(diǎn)P,連接CO并延長(zhǎng)交⊙O于點(diǎn)G,連接EG.
(1)求證:DF是⊙O的切線;
(2)若AD=DP,OB=3,求的長(zhǎng)度;
(3)若DE=4,AE=8,求線段EG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點(diǎn),連接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為實(shí)施鄉(xiāng)村振興戰(zhàn)略,解決某山區(qū)老百姓出行難的問(wèn)題,當(dāng)?shù)卣疀Q定修建一條高速公路.其中一段長(zhǎng)為146米的山體隧道貫穿工程由甲乙兩個(gè)工程隊(duì)負(fù)責(zé)施工.甲工程隊(duì)獨(dú)立工作2天后,乙工程隊(duì)加入,兩工程隊(duì)又聯(lián)合工作了1天,這3天共掘進(jìn)26米.已知甲工程隊(duì)每天比乙工程隊(duì)多掘進(jìn)2米.按此速度完成這項(xiàng)隧道貫穿工程,甲乙兩個(gè)工程隊(duì)還需聯(lián)合工作__________天.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖2的方法拼成一個(gè)邊長(zhǎng)為(m+n)的正方形.
⑴ 請(qǐng)用兩種不同的方法求圖2中陰影部分的面積.
方法1: ;方法2: ;
⑵ 觀察圖2寫出,,三個(gè)代數(shù)式之間的等量關(guān)系: ;
⑶ 根據(jù)⑵中你發(fā)現(xiàn)的等量關(guān)系,解決如下問(wèn)題:若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使,將一塊透明的三角尺的直角頂點(diǎn)放在點(diǎn)O處,邊OM在射線OB上,邊ON在直線AB的下方.
(1)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至如圖2所示的位置,使邊OM在的內(nèi)部,且恰好平分,求的度數(shù).
(2)將圖1中的三角尺繞點(diǎn)O按每秒的速度逆時(shí)針旋轉(zhuǎn)一周,在旋轉(zhuǎn)過(guò)程中,第t秒時(shí),直線ON恰好平分銳角,則t的值為________(直接寫出結(jié)果).
(3)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至如圖3所示的位置,使ON在的內(nèi)部,請(qǐng)?zhí)骄?/span>與之間的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com