【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;

(2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達(dá)端點時,另一個動點也隨之停止運動.設(shè)運動時間為t秒,當(dāng)t為何值時,PA=QA?

(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

【答案】(1),直角三角形;(2);(3)M1),M2),M3),M4,).

【解析】

試題分析:(1)先確定出點A,B坐標(biāo),再用待定系數(shù)法求出拋物線解析式;用勾股定理逆定理判斷出△ABC是直角三角形;

(2)根據(jù)運動表示出OP=2t,CQ=10﹣t,判斷出Rt△AOP≌Rt△ACQ,得到OP=CQ即可;

(3)分三種情況用平面坐標(biāo)系內(nèi),兩點間的距離公式計算即可

試題解析:(1)∵直線y=﹣2x+10與x軸,y軸相交于A,B兩點,∴A(5,0),B(0,10),∵拋物線過原點,∴設(shè)拋物線解析式為,∵拋物線過點B(0,10),C(8,4),∴,∴,∴拋物線解析式為,∵A(5,0),B(0,10),C(8,4),∴==125,==100,==25,∴,∴△ABC是直角三角形.

(2)如圖1,當(dāng)P,Q運動t秒,即OP=2t,CQ=10﹣t時,由(1)得,AC=OA,∠ACQ=∠AOP=90°,在Rt△AOP和Rt△ACQ中,AC=OA,PA=QA,∴Rt△AOP≌Rt△ACQ,∴OP=CQ,∴2t=10﹣t,∴t=,∴當(dāng)運動時間為時,PA=QA;

(3)存在,∵,∴拋物線的對稱軸為x=,∵A(5,0),B(0,10),∴AB=

設(shè)點M(,m);

①若BM=BA時,∴,∴m1=,m2=,∴M1,),M2,;

②若AM=AB時,∴,∴m3=,m4=,∴M3),M4,;

③若MA=MB時,∴,∴m=5,∴M(,5),此時點M恰好是線段AB的中點,構(gòu)不成三角形,舍去;

∴點M的坐標(biāo)為:M1),M2,),M3,),M4,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ab,且c為任意數(shù),則ac2_______bc2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定,中、小學(xué)生每天在校體育活動時間不低于1h,為此,某市就“你每天在校體育活動時間是多少”的問題隨機調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖如圖所示,其中A組為t<0.5h,B組為0.5h≤t<1h,C組為1h≤t<1.5h,D組為t≥1.5h.
根據(jù)上述信息解答下列問題:
(1)本次調(diào)查數(shù)據(jù)的中位數(shù)落在組內(nèi);
(2)若該轄區(qū)約有20000名學(xué)生,請估計其中達(dá)到國家規(guī)定體育活動時間的人數(shù);
(3)若A組取t=0.25h,B組取t=0.75h,C組取t=1.25h,D組取t=2h,試計算這300名學(xué)生平均每天在校體育活動的時間(結(jié)果精確到0.1h).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若方程(a-2x+ax-3=0是關(guān)于x的一元二次方程,則a的取值范圍是( ).

A.a2a2B.a0a2C.a2D.a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥AD于點Q,PQ=4,PE=1.
(1)求∠BPQ的度數(shù);
(2)求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程4x-2x-1=0的根的情況為( )

A.有兩個相等的實數(shù)根B.有兩個不相等的實根數(shù)

C.只有一個實數(shù)根D.沒有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(2)在y軸上找出一點P,使得PA+PB的值最小,直接寫出點P的坐標(biāo);
(3)在平面直角坐標(biāo)系中,找出一點A2 , 使△A2BC與△ABC關(guān)于直線BC對稱,直接寫出點A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2007年某校初中三個年級在校學(xué)生共796名,學(xué)生的出生月份統(tǒng)計如下,根據(jù)圖中數(shù)據(jù)回答以下問題:

(1)出生人數(shù)少于60人的月份有哪些?
(2)至少有兩個人生日在10月5日是不可能事件,還是可能事件,還是必然事件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】君暢中學(xué)計劃購買一些文具送給學(xué)生,為此學(xué)校決定圍繞“在筆袋、圓規(guī)、直尺、鋼筆四種文具中,你最需要的文具是什么?(必選且只選一種)”的問題,在全校范圍內(nèi)隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)以上信息回答下列問題:

(1)在這次調(diào)查中,最需要圓規(guī)的學(xué)生有多少名?并補全條形統(tǒng)計圖;
(2)如果全校有970名學(xué)生,請你估計全校學(xué)生中最需要鋼筆的學(xué)生有多少名?

查看答案和解析>>

同步練習(xí)冊答案