【題目】如圖,ABC中,∠BAC60°,∠B45°,AB2,點DBC上的一個動點,點D關于ABAC的對稱點分別是點E,F,四邊形AEGF是平行四邊形,則四邊形AEGF面積的最小值是

A. 1B. C. D.

【答案】D

【解析】

由對稱的性質和菱形的定義證出四邊形AEGF是菱形,得出∠EAF=2BAC=120°,當ADBC最小時,AD的值最小,即AE的值最小,即菱形AEGF面積最小,求出AD=,即可得出四邊形AEGF的面積的最小值.

由對稱的性質得:AE=AD=AF
∵四邊形AEGF是平行四邊形,
∴四邊形AEGF是菱形,
∴∠EAF=2BAC=120°,
ADBC最小時,AD的值最小,即AE的值最小,即菱形AEGF面積最小,
∵∠ABC=45°AB=2,
AD=
∴四邊形AEGF的面積的最小值=

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某房地產開發(fā)公司計劃建 A,B 兩種戶型的住房 80 套,該公司所籌資金不 少于 2090 萬元,但不超過 2096 萬元,且所籌金全部用于建房,兩種戶型的建房成 本和售價如下表:

1)該公司對兩種戶型的住房有哪幾種建房方案?

2)該公司選用哪種建房方案獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,ABC中,∠BAC=100°,AB=AC,PBC邊上任意一點.若點E、F分別在AB、AC上,且∠EPF=40°,求證:BPE∽△CFP;

(2)如圖2,點P在邊CB的延長線上,點E在邊AB上,點F在邊AC的延長線上,仍有∠EPF=40°,探索PB·PCBE·CF有怎樣的關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC的三邊長分別為a,b,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判斷△ABC是直角三角形的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】120194月,中國新聞出版研究院發(fā)布了《第十六次全國國民閱讀調查報告》,以下是小明根據該報告提供的數(shù)據制作的“2017-2018年我國未成年人圖書閱讀率統(tǒng)計圖的一部分.

報告中提到,20189-13周歲少年兒童圖書閱讀率比2017年提高了3.1個百分點,2017年我國0-17周歲未成年人圖書閱讀率為84.8%.

根據以上信息解決下列問題:

①寫出圖1a的值;

②補全圖1

2)讀書社的小明在搜集資料的過程中,發(fā)現(xiàn)了《人民日報》曾經介紹過多種閱讀法,他在班上同學們介紹了其中6種,并調查了全班40名同學對這6種閱讀法的認可程度,制作了如下的統(tǒng)計表和統(tǒng)計圖:

根據以上信息解決下列問題:

①補全統(tǒng)計表及圖2;

②根據調查結果估計全年級500名同學最愿意使用.精華提煉法的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為t秒.

(1)出發(fā)2秒后,求PQ的長;

(2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,PQB能形成等腰三角形?

(3)當點Q在邊CA上運動時,求能使BCQ成為等腰三角形的運動時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線L:y=ax2+bx+ca,b,c是常數(shù),abc≠0與直線l都經過y軸上的一點P,且拋物線L的頂點Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關系.此時,直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.

1若直線y=mx+1與拋物線y=x2﹣2x+n具有“一帶一路”關系,求m,n的值;

2若某“路線”L的頂點在反比例函數(shù)y=的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;

3當常數(shù)k滿足≤k≤2時,求拋物線L:y=ax2+3k2﹣2k+1x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝廠承攬一項生產夏涼小衫1600件的任務,計劃用t天完成.

(1)寫出每天生產夏涼小衫w(件)與生產時間t(天)(t>4)之間的函數(shù)關系式;

(2)由于氣溫提前升高,商家與服裝廠商議調整計劃,決定提前4天交貨,那么服裝廠每天要多做多少件夏涼小衫才能完成任務?

【答案】(1);(2)

【解析】試題分析:(1)根據實際意義可列出夏涼小衫w(件)與生產時間t(天)(t4)之間的函數(shù)關系式;

2)根據題意列出t﹣4對應的式子,與(1)中的式子相減即可.

試題解析:(1)由題意可得,函數(shù)關系式為:w=);

2==.(或).

答:每天多做(或)件夏涼小衫才能完成任務.

考點:反比例函數(shù)的應用.

型】解答
束】
13

【題目】如圖所示,小華設計了一個探究杠桿平衡條件的實驗:在一根勻質的木桿中點O左側固定位置B處懸掛重物A,在中點O右側用一個彈簧秤向下拉,改變彈簧秤與點O的距離xcm),觀察彈簧秤的示數(shù)y(N)的變化情況。實驗數(shù)據記錄如下:

xcm

10

15

20

25

30

y(N)

30

20

15

12

10

(1)把上表中x,y的各組對應值作為點的坐標,在坐標系中描出相應的點,用平滑曲線連接這些點并觀察所得的圖象,猜測y(N)與xcm)之間的函數(shù)關系,并求出函數(shù)關系式;

(2)當彈簧秤的示數(shù)為24N時,彈簧秤與O點的距離是多少cm?

隨著彈簧秤與O點的距離不斷減小,彈簧秤上的示數(shù)將發(fā)生怎樣的變化?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】樂樂家附近的商場為了吸引顧客,設立了一個可以自由轉動的轉盤,為轉盤直徑,如圖所示,并規(guī)定:顧客消費50元(含50元)以上,就能獲得一次轉動轉盤的機會,如果轉盤停止后,指針正好對準9折、8折、7折區(qū)域,則顧客就可以獲得相應區(qū)域的優(yōu)惠.

1)某顧客在該商場消費40元,是否可以獲得轉動轉盤的機會?

2)某顧客在該商場正好消費66元,則他轉動一次轉盤,獲得三種打折優(yōu)惠的概率分別是多少?

查看答案和解析>>

同步練習冊答案