【題目】如圖,拋物線的對稱軸是直線x=2,頂點(diǎn)A的縱坐標(biāo)為1,點(diǎn)B(4,0)在此拋物線上.
(1)求此拋物線的解析式;
(2)若此拋物線對稱軸與x軸交點(diǎn)為C,點(diǎn)D(x,y)為拋物線上一動點(diǎn),過點(diǎn)D作直線y=2的垂線,垂足為E.
①用含y的代數(shù)式表示CD2 , 并猜想CD2與DE2之間的數(shù)量關(guān)系,請給出證明;
②在此拋物線上是否存在點(diǎn)D,使∠EDC=120°?如果存在,請直接寫出D點(diǎn)坐標(biāo);如果不存在,請說明理由.
【答案】
(1)
解:依題意,設(shè)拋物線的解析式為:y=a(x﹣2)2+1,代入B(4,0),得:
a(4﹣2)2+1=0,解得:a=﹣
∴拋物線的解析式:y=﹣ (x﹣2)2+1
(2)
解:
①猜想:CD2=DE2;
證明:由D(x,y)、C(2,0)、E(x,2)知:
CD2=(x﹣2)2+y2,DE2=(y﹣2)2;
由(1)知:(x﹣2)2=﹣4(y﹣1)=﹣4y+4,代入CD2中,得:
CD2=y2﹣4y+4=(y﹣2)2=DE2.
②由于∠EDC=120°>90°,所以點(diǎn)D必在x軸上方,且拋物線對稱軸左右兩側(cè)各有一個,以左側(cè)為例:
延長ED交x軸于F,則EF⊥x軸;
在Rt△CDF中,∠FDC=180°﹣120°=60°,∠DCF=30°,則:
CD=2DF、CF= DF;
設(shè)DF=m,則:CF= m、CD=DE=2m;
∵EF=ED+DF=2m+m=2,
∴m= ,DF=m= ,CF= m= ,OF=OC﹣CF=2﹣ ,
∴D(2﹣ , );
同理,拋物線對稱軸右側(cè)有:D(2+ , );
綜上,存在符合條件的D點(diǎn),且坐標(biāo)為(2﹣ , )或(2+ , ).
【解析】(1)已知拋物線的頂點(diǎn)坐標(biāo),可以將拋物線的解析式設(shè)為頂點(diǎn)式,再代入B點(diǎn)的坐標(biāo)求解即可.(2)①由坐標(biāo)系兩點(diǎn)間的距離公式不難得到CD2和DE2的表達(dá)式,再將(1)的拋物線解析式代入CD2的表達(dá)式中,用y替換掉x后,比較兩者的大小關(guān)系即可;②∠EDC是鈍角,那么點(diǎn)D一定在x軸的上方,且拋物線對稱軸的左右兩側(cè)各一個(它們關(guān)于拋物線對稱軸對稱),延長ED交x軸于F,在Rt△CDF中,∠DCF=30°,那么DC=2DF、CF= DF,設(shè)出DF的長后,可以表示出CD、DE的長,由EF=ED+DF=2即可得出DF的長,從而求出點(diǎn)D的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班級從甲乙兩位同學(xué)中選派一人參加“秀美山河”知識競賽,老師對他們的五次模擬成績(單位:分)進(jìn)行了整理,美工計(jì)算出甲成績的平均數(shù)是80,甲乙成績的方差分別是320,40,但繪制的統(tǒng)計(jì)圖尚不完整.
甲乙兩人模擬成績統(tǒng)計(jì)表
根據(jù)以上信息,請你解答下列問題:
(1)a=;
(2)請完成圖中表示甲成績變化情況的折線;
(3)求乙成績的平均數(shù);
(4)從平均數(shù)和方差的角度分析,誰將被選中.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的面積是16,對角線AC、BD相交于點(diǎn)O,點(diǎn)M1、N1、P1分別為線段OD、DC、CO的中點(diǎn),順次連接M1N1、N1 P1、P1M1得到第一個△P1M1N1 , 面積為S1 , 分別取M1N1、N1P1、P1M1三邊的中點(diǎn)P2、M2、N2 , 得到第二個△P2M2N2 , 面積記為S2 , 如此繼續(xù)下去得到第n個△PnMnNn , 面積記為Sn , 則Sn﹣Sn﹣1= . (用含n的代數(shù)式表示,n≥2,n為整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小梅將邊長分別為,,,,,…長的若干個正方形按一定規(guī)律拼成不同的長方形,如圖所示.
求第四個長方形的周長;
當(dāng)時,求第五個長方形的面積.(用科學(xué)記數(shù)法表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:直線與雙曲線交于A.B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4, 若雙曲線上一點(diǎn)C的縱坐標(biāo)為8,連接AC.
(1)填空: k的值為_______; 點(diǎn)B的坐標(biāo)為___________;點(diǎn)C的坐標(biāo)為___________.
(2)直接寫出關(guān)于的不等式的解集.
(3)求三角形AOC的面積
(4) 若在x軸上有點(diǎn)M,y軸上有點(diǎn)N,且點(diǎn)M.N.A.C四點(diǎn)恰好構(gòu)成平行四邊形,直接寫出點(diǎn)M.N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是雙曲線y= 在第二象限分支上的任意一點(diǎn),點(diǎn)B、點(diǎn)C、點(diǎn)D分別是點(diǎn)A關(guān)于x軸、坐標(biāo)原點(diǎn)、y軸的對稱點(diǎn).若四邊形ABCD的面積是8,則k的值為( )
A.﹣1
B.1
C.2
D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1 , 并直接寫出C1點(diǎn)的坐標(biāo);
(2)以點(diǎn)B為位似中心,在網(wǎng)格中畫出△A2BC2 , 使△A2BC2與△ABC位似,且位似比為2:1,并直接寫出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是AC邊上的一個動點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)判斷OE與OF的大小關(guān)系?并說明理由?
(2)當(dāng)點(diǎn)O運(yùn)動何處時,四邊形AECF是矩形?并說出你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C、D分別為EA、EB的中點(diǎn),∠E=30°,∠1=110°,則∠2的度數(shù)為( )
A.80°
B.90°
C.100°
D.110°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com