【題目】如圖,△ABC中,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.

(1)判斷OEOF的大小關(guān)系?并說(shuō)明理由?

(2)當(dāng)點(diǎn)O運(yùn)動(dòng)何處時(shí),四邊形AECF是矩形?并說(shuō)出你的理由.

【答案】(1)證OE=OC,OF=OC,推出OE=OF,

(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF是矩形

【解析】試題分析:

(1)先判斷∠ECF=90°,再利用角平分線,平行線,等腰三角形的關(guān)系得到OE=OC,OF=OC;

(2)結(jié)合(1)中的結(jié)論,利用對(duì)角線相等的平行四邊形是矩形說(shuō)明.

試題解析:

(1)OE=OF,理由如下:

∵CE,CF別是∠ACB和∠ACB外角的平分線,

∴∠ACE=∠BCE=∠ACB,∠ACF=∠GCF=∠ACG.

∴∠ECF=∠ACE+∠ACF=∠ACB+∠ACG=(ACB+∠ACG)=∠BCG=90°.

∵M(jìn)N∥BC,∴∠FEC=∠BCE,∴∠FEC=∠ACE,∴OE=OC.

同理OF=OC,所以O(shè)E=OF.

(2)(1),OC=OE=OF,所以當(dāng)OA=OC時(shí),對(duì)角線ACEF互相平分且相等,而對(duì)角線相等的平行四邊形是矩形,則當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖中的AB所在的直線上建一圖書室,本社區(qū)有兩所學(xué)校所在的位置在點(diǎn)C和點(diǎn)D處,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.Okm,試問:圖書室E應(yīng)該建在距點(diǎn)A多少km處,才能使它到兩所學(xué)校的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的對(duì)稱軸是直線x=2,頂點(diǎn)A的縱坐標(biāo)為1,點(diǎn)B(4,0)在此拋物線上.

(1)求此拋物線的解析式;
(2)若此拋物線對(duì)稱軸與x軸交點(diǎn)為C,點(diǎn)D(x,y)為拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)D作直線y=2的垂線,垂足為E.
①用含y的代數(shù)式表示CD2 , 并猜想CD2與DE2之間的數(shù)量關(guān)系,請(qǐng)給出證明;
②在此拋物線上是否存在點(diǎn)D,使∠EDC=120°?如果存在,請(qǐng)直接寫出D點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1) (2)

(3)(-2)-(+4.7)-(-0.4)+ (-3.3) (4)

(5) (6)(-+)×(-36)

(7) (8)—(用簡(jiǎn)便方法計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】暴雨過(guò)后,某地遭遇山體滑坡,武警總隊(duì)派出一隊(duì)武警戰(zhàn)士前往搶險(xiǎn).半小時(shí)后,第二隊(duì)前去支援,平均速度是第一隊(duì)的1.5倍,結(jié)果兩隊(duì)同時(shí)到達(dá).已知搶險(xiǎn)隊(duì)的出發(fā)地與災(zāi)區(qū)的距離為90千米,兩隊(duì)所行路線相同.
(1)問兩隊(duì)的平均速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某一出租車一天下午以鼓樓為出發(fā)地在東西方向營(yíng)運(yùn),向東為正,向西為負(fù),行車?yán)锍蹋▎挝唬?/span>)依先后次序記錄如下:,,,,,

將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點(diǎn)多遠(yuǎn)?在鼓樓的什么方向?

出租車在行駛過(guò)程中,離鼓樓最遠(yuǎn)的距離是多少?

出租車按物價(jià)部門規(guī)定,起步價(jià)(不超過(guò)千米)為元,超過(guò)千米的部分每千米的價(jià)格為元,司機(jī)一個(gè)下午的營(yíng)業(yè)額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為某三岔路口交通環(huán)島的簡(jiǎn)化模型,在某高峰時(shí)刻,單位時(shí)間進(jìn)出路口A,B,C的機(jī)動(dòng)車輛數(shù)如圖所示.圖中x1,x2,x3分別表示該時(shí)段單位時(shí)間通過(guò)路段AB,BC,CA的機(jī)動(dòng)車輛數(shù)(假設(shè)單位時(shí)間內(nèi)在上述路段中同一路段上駛?cè)肱c駛出的車輛數(shù)相等),則有(  )

A. x1x2x3 B. x1x3x2 C. x2x3x1 D. x3x2x1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P、Q同時(shí)從點(diǎn)C出發(fā),以1cm/s的速度分別沿CA、CB勻速運(yùn)動(dòng).當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)P作AC的垂線l交AB于點(diǎn)R,連接PQ、RQ,并作△PQR關(guān)于直線l對(duì)稱的圖形,得到△PQ′R.設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t(s),△PQ′R與△PAR重疊部分的面積為S(cm2).

(1)t為何值時(shí),點(diǎn)Q′恰好落在AB上?
(2)求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)S能否為 cm2?若能,求出此時(shí)的t值;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,D、E、F分別是各邊的中點(diǎn),AH是高,求證:∠DHFDEF.

查看答案和解析>>

同步練習(xí)冊(cè)答案