【題目】化簡并求值:
(1)5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣,b=.
(2)已知|x+1|+(y﹣2)2=0,求(2x2y﹣2xy2)﹣[(3x2y2+3x2y)+(3x2y2﹣3xy2)]的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的任意兩點(diǎn)P(x1,y1),Q(x2,y2),我們把|x1-x2|+|y1-y2|叫P,Q兩點(diǎn)間的“平面距離”,記作d(P,Q)。
(1)已知O為坐標(biāo)原點(diǎn),動點(diǎn)M(x,y)是坐標(biāo)軸上的點(diǎn),滿足d(O,M)=l,請寫出點(diǎn)M的坐標(biāo)。答: ________;
(2)設(shè)P0(x0,y0)是平面上一點(diǎn),Q0(x,y)是直線l:y=kx+b上的動點(diǎn),我們定義d(P0,Q0)的最小值叫做P0到直線l的“平面距離”。試求點(diǎn)M(2,1)到直線y=x+2的“平面距離”。
(3)在上面的定義基礎(chǔ)上,我們可以定義平面上一條直線l與⊙C的“直角距離”:在直線l與⊙C上各自任取一點(diǎn),此兩點(diǎn)之間的“平面距離”的最小值稱為直線l與⊙O的“平面距離”,記作d(l,⊙C)。
試求直線y=x+2與圓心在直角坐標(biāo)系原點(diǎn)、半徑是1的⊙O的直角距離d(l,⊙O)=__________。(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線a平行于x軸,且過點(diǎn)2,3和x,y,則y=________;
過點(diǎn)A2,5作x軸的垂線l,則直線l上的點(diǎn)的坐標(biāo)特點(diǎn)是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下列程序計算,把答案填寫在表格里,然后看看有什么規(guī)律,想想為什么會有
這個規(guī)律?
(1)填寫表內(nèi)空格:
輸入 | 3 | 2 | -2 | … | |
輸出答案 | 0 | … |
(2)你發(fā)現(xiàn)的規(guī)律是____________.
(3)用簡要過程說明你發(fā)現(xiàn)的規(guī)律的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第二象限內(nèi)的點(diǎn)P(x,y)滿足|x|=5,y2=4,則點(diǎn)P的坐標(biāo)是____________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了方便居民低碳出行,2016年10月1日起,聊城市公共自行車租賃系統(tǒng)(一期)試運(yùn)行,越來越多的居民選擇公共自行車作為出行的交通工具,市區(qū)某中學(xué)課外興趣小組為了了解某小區(qū)居民出行方式的變化情況,隨機(jī)抽取了該小區(qū)部分居民進(jìn)行調(diào)查,并繪制了如圖的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出)
請根據(jù)上面的統(tǒng)計圖,解答下列問題:
(1)被調(diào)查的總?cè)藬?shù)是 ______ 人;
(2)公共自行車租賃系統(tǒng)運(yùn)行后,被調(diào)查居民選擇自行車作為出行方式的百分比提高了多少?
(3)如果該小區(qū)共有居民2000人,公共自行車租賃系統(tǒng)運(yùn)行后估計選擇自行車作為出行方式的有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com