分析 (1)根據(jù)平行四邊形性質(zhì)得出DF∥BE,得出平行四邊形BFDE,根據(jù)矩形的判定得出即可;
(2)根據(jù)矩形的性質(zhì)求出BF=DE=4,根據(jù)勾股定理求出AD,求出AD=DF,即可得出答案.
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴DF∥BE,
又∵DF=BE,
∴四邊形BFDE是平行四邊形,
又∵DE⊥AB,
∴∠DEB=90°,
∴平行四形BFDE是矩形;
(2)解:∵四邊形BFDE是矩形,
∴DF∥AB,DE=BF=4,DF=BE,
∴∠DAF=∠FAB,
又∵AF平分∠DAB,
∴∠DAF=∠FAB,
∴∠DFA=∠DAF,
∴DA=DF,
又∵DE⊥AB,
∴∠DEA=90°,
在Rt△ADE中
AD=$\sqrt{A{E}^{2}+D{E}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴BE=5.
點(diǎn)評(píng) 本題考查了平行線(xiàn)的性質(zhì),平行四邊形的性質(zhì)和判定,勾股定理,矩形的性質(zhì)和判定的應(yīng)用,能綜合運(yùn)用知識(shí)點(diǎn)進(jìn)行推理是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com